BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 20179651)

  • 1. A test for determining critical heart rate using the critical power model.
    Mielke M; Housh TJ; Hendrix CR; Zuniga J; Camic CL; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2011 Feb; 25(2):504-10. PubMed ID: 20179651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Camic CL; Lewis RW; Schmidt RJ; Johnson GO
    Res Q Exerc Sport; 2013 Jun; 84(2):232-8. PubMed ID: 23930549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The critical power function is dependent on the duration of the predictive exercise tests chosen.
    Bishop D; Jenkins DG; Howard A
    Int J Sports Med; 1998 Feb; 19(2):125-9. PubMed ID: 9562222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen uptake, heart rate, and ratings of perceived exertion at the PWCVo2.
    Mielke M; Housh TJ; Hendrix CR; Camic CL; Zuniga JM; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2009 Jul; 23(4):1292-9. PubMed ID: 19528845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of rating of perceived exertion-based tests of physical working capacity.
    Mielke M; Housh TJ; Malek MH; Beck TW; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2008 Jan; 22(1):293-302. PubMed ID: 18296989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimated times to exhaustion and power outputs at the gas exchange threshold, physical working capacity at the rating of perceived exertion threshold, and respiratory compensation point.
    Bergstrom HC; Housh TJ; Zuniga JM; Camic CL; Traylor DA; Schmidt RJ; Johnson GO
    Appl Physiol Nutr Metab; 2012 Oct; 37(5):872-9. PubMed ID: 22716291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimated times to exhaustion at the PWC V O2, PWC HRT, and VT.
    Mielke M; Housh TJ; Malek MH; Beck TW; Hendrix CR; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2008 Nov; 22(6):2003-10. PubMed ID: 18978609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ventilatory anaerobic threshold is related to, but is lower than, the critical power, but does not explain exercise tolerance at this workrate.
    Okudan N; Gökbel H
    J Sports Med Phys Fitness; 2006 Mar; 46(1):15-9. PubMed ID: 16596094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the Critical Heart Model to Treadmill Running.
    Bergstrom HC; Housh TJ; Cochrane KC; Jenkins ND; Buckner SL; Goldsmith JA; Zuniga JM; Schmidt RJ; Johnson GO; Cramer JT
    J Strength Cond Res; 2015 Aug; 29(8):2237-48. PubMed ID: 25647653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximal lactate steady state, respiratory compensation threshold and critical power.
    Dekerle J; Baron B; Dupont L; Vanvelcenaher J; Pelayo P
    Eur J Appl Physiol; 2003 May; 89(3-4):281-8. PubMed ID: 12736836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aging and training status on ventilatory response during incremental cycling exercise.
    Lenti M; De Vito G; Scotto di Palumbo A; Sbriccoli P; Quattrini FM; Sacchetti M
    J Strength Cond Res; 2011 May; 25(5):1326-32. PubMed ID: 21273913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Respiratory Compensation Point is Not a Valid Surrogate for Critical Power.
    Leo JA; Sabapathy S; Simmonds MJ; Cross TJ
    Med Sci Sports Exerc; 2017 Jul; 49(7):1452-1460. PubMed ID: 28166117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship of the heart rate deflection point to the ventilatory threshold in trained cyclists.
    Bodner ME; Rhodes EC; Martin AD; Coutts KD
    J Strength Cond Res; 2002 Nov; 16(4):573-80. PubMed ID: 12423188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance.
    Keir DA; Fontana FY; Robertson TC; Murias JM; Paterson DH; Kowalchuk JM; Pogliaghi S
    Med Sci Sports Exerc; 2015 Sep; 47(9):1932-40. PubMed ID: 25606817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of W(peak), VO2(peak) and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance.
    Bentley DJ; McNaughton LR
    J Sci Med Sport; 2003 Dec; 6(4):422-35. PubMed ID: 14723392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of V̇ o2 to the Critical Power Model to Derive the Critical V̇ o2.
    Succi PJ; Dinyer TK; Byrd MT; Voskuil CC; Bergstrom HC
    J Strength Cond Res; 2022 Dec; 36(12):3374-3380. PubMed ID: 34474433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical power can be estimated from nonexhaustive tests based on rating of perceived exertion responses.
    Nakamura FY; Okuno NM; Perandini LA; S Caldeira LF; Simões HG; Cardoso JR; Bishop DJ
    J Strength Cond Res; 2008 May; 22(3):937-43. PubMed ID: 18438218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time to exhaustion during cycling is not well predicted by critical power calculations.
    Pallarés JG; Lillo-Bevia JR; Morán-Navarro R; Cerezuela-Espejo V; Mora-Rodriguez R
    Appl Physiol Nutr Metab; 2020 Jul; 45(7):753-760. PubMed ID: 31935109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new single work bout test to estimate critical power and anaerobic work capacity.
    Bergstrom HC; Housh TJ; Zuniga JM; Camic CL; Traylor DA; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2012 Mar; 26(3):656-63. PubMed ID: 22310519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen cost of kettlebell swings.
    Farrar RE; Mayhew JL; Koch AJ
    J Strength Cond Res; 2010 Apr; 24(4):1034-6. PubMed ID: 20300022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.