These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 20179819)

  • 1. Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals.
    Vincent ME; Liu W; Haney EB; Ismagilov RF
    Chem Soc Rev; 2010 Mar; 39(3):974-84. PubMed ID: 20179819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics.
    Boedicker JQ; Li L; Kline TR; Ismagilov RF
    Lab Chip; 2008 Aug; 8(8):1265-72. PubMed ID: 18651067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking the stochastic growth of bacterial populations in microfluidic droplets.
    Taylor D; Verdon N; Lomax P; Allen RJ; Titmuss S
    Phys Biol; 2022 Feb; 19(2):026003. PubMed ID: 35042205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic cell culture.
    Mehling M; Tay S
    Curr Opin Biotechnol; 2014 Feb; 25():95-102. PubMed ID: 24484886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement.
    Liu W; Kim HJ; Lucchetta EM; Du W; Ismagilov RF
    Lab Chip; 2009 Aug; 9(15):2153-62. PubMed ID: 19606291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals of microfluidic cell culture in controlled microenvironments.
    Young EW; Beebe DJ
    Chem Soc Rev; 2010 Mar; 39(3):1036-48. PubMed ID: 20179823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics for single-cell genetic analysis.
    Thompson AM; Paguirigan AL; Kreutz JE; Radich JP; Chiu DT
    Lab Chip; 2014 Sep; 14(17):3135-42. PubMed ID: 24789374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Immunology and Microfluidics for Single Immune Cell Analysis.
    Sinha N; Subedi N; Tel J
    Front Immunol; 2018; 9():2373. PubMed ID: 30459757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of microfluidics in biology.
    Holmes D; Gawad S
    Methods Mol Biol; 2010; 583():55-80. PubMed ID: 19763459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-Free Dissociation of Neurospheres by a Microfluidic Chip-Based Method.
    Lin CH; Chang HC; Lee DC; Chiu IM; Hsu CH
    Methods Mol Biol; 2016; 1516():289-297. PubMed ID: 27044047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell droplet microfluidics for biomedical applications.
    Liu D; Sun M; Zhang J; Hu R; Fu W; Xuanyuan T; Liu W
    Analyst; 2022 May; 147(11):2294-2316. PubMed ID: 35506869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Microfluidic Platform for High-throughput Single-cell Isolation and Culture.
    Lin CH; Chang HC; Hsu CH
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics for flow cytometric analysis of cells and particles.
    Huh D; Gu W; Kamotani Y; Grotberg JB; Takayama S
    Physiol Meas; 2005 Jun; 26(3):R73-98. PubMed ID: 15798290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-driven microfluidic perfusion culture device for integrated dose-response assays.
    Hattori K; Sugiura S; Kanamori T
    J Lab Autom; 2013 Dec; 18(6):437-45. PubMed ID: 24014544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips.
    Ma L; Datta SS; Karymov MA; Pan Q; Begolo S; Ismagilov RF
    Integr Biol (Camb); 2014 Aug; 6(8):796-805. PubMed ID: 24953827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.