These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 20179819)

  • 21. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes.
    Dusny C; Schmid A
    Environ Microbiol; 2015 Jun; 17(6):1839-56. PubMed ID: 25330456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent developments in microfluidics for cell studies.
    Xiong B; Ren K; Shu Y; Chen Y; Shen B; Wu H
    Adv Mater; 2014 Aug; 26(31):5525-32. PubMed ID: 24536032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in single cell manipulation and biochemical analysis on microfluidics.
    Gao D; Jin F; Zhou M; Jiang Y
    Analyst; 2019 Jan; 144(3):766-781. PubMed ID: 30298867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic systems for diagnostic applications: a review.
    Lei KF
    J Lab Autom; 2012 Oct; 17(5):330-47. PubMed ID: 22893635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An easy-to-operate method for single-cell isolation and retrieval using a microfluidic static droplet array.
    Ding L; Radfar P; Rezaei M; Warkiani ME
    Mikrochim Acta; 2021 Jul; 188(8):242. PubMed ID: 34226955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic-based platforms for cell-to-cell communication studies.
    Zhu L; Tang Q; Mao Z; Chen H; Wu L; Qin Y
    Biofabrication; 2023 Dec; 16(1):. PubMed ID: 38035370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells.
    Qian T; Shusta EV; Palecek SP
    Curr Opin Genet Dev; 2015 Oct; 34():54-60. PubMed ID: 26313850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
    Kuzmic N; Moore T; Devadas D; Young EWK
    Biomech Model Mechanobiol; 2019 Jun; 18(3):717-731. PubMed ID: 30604299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Droplet microfluidics--a tool for single-cell analysis.
    Joensson HN; Andersson Svahn H
    Angew Chem Int Ed Engl; 2012 Dec; 51(49):12176-92. PubMed ID: 23180509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments.
    Chi PY; Spuul P; Tseng FG; Genot E; Chou CF; Taloni A
    Adv Exp Med Biol; 2019; 1146():79-103. PubMed ID: 31612455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability.
    Boedicker JQ; Vincent ME; Ismagilov RF
    Angew Chem Int Ed Engl; 2009; 48(32):5908-11. PubMed ID: 19565587
    [No Abstract]   [Full Text] [Related]  

  • 33. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous Flow Microfluidic Bioparticle Concentrator.
    Martel JM; Smith KC; Dlamini M; Pletcher K; Yang J; Karabacak M; Haber DA; Kapur R; Toner M
    Sci Rep; 2015 Jun; 5():11300. PubMed ID: 26061253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic 3D cell culture: from tools to tissue models.
    van Duinen V; Trietsch SJ; Joore J; Vulto P; Hankemeier T
    Curr Opin Biotechnol; 2015 Dec; 35():118-26. PubMed ID: 26094109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viable cell culture in PDMS-based microfluidic devices.
    Tanyeri M; Tay S
    Methods Cell Biol; 2018; 148():3-33. PubMed ID: 30473072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic culture models of tumor angiogenesis.
    Stroock AD; Fischbach C
    Tissue Eng Part A; 2010 Jul; 16(7):2143-6. PubMed ID: 20214470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rare cell isolation and analysis in microfluidics.
    Chen Y; Li P; Huang PH; Xie Y; Mai JD; Wang L; Nguyen NT; Huang TJ
    Lab Chip; 2014 Feb; 14(4):626-45. PubMed ID: 24406985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review.
    Sharan P; Nsamela A; Lesher-PĂ©rez SC; Simmchen J
    Small; 2021 Jul; 17(26):e2007403. PubMed ID: 33949106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic confinement enhances phenotype and function of hepatocyte spheroids.
    Choi JH; Loarca L; De Hoyos-Vega JM; Dadgar N; Loutherback K; Shah VH; Stybayeva G; Revzin A
    Am J Physiol Cell Physiol; 2020 Sep; 319(3):C552-C560. PubMed ID: 32697600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.