These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 20179819)

  • 41. A Disposable Passive Microfluidic Device for Cell Culturing.
    Guzzi F; Candeloro P; Coluccio ML; Cristiani CM; Parrotta EI; Scaramuzzino L; Scalise S; Dattola E; D'Attimo MA; Cuda G; Lamanna E; Passacatini LC; Carbone E; Krühne U; Fabrizio ED; Perozziello G
    Biosensors (Basel); 2020 Feb; 10(3):. PubMed ID: 32121446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic-based technologies in cancer liquid biopsy: Unveiling the role of horizontal gene transfer (HGT) materials.
    Haghjooy Javanmard S; Rafiee L; Bahri Najafi M; Khorsandi D; Hasan A; Vaseghi G; Makvandi P
    Environ Res; 2023 Dec; 238(Pt 1):117083. PubMed ID: 37690629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Target Confinement in Small Reaction Volumes Using Microfluidic Technologies: A Smart Approach for Single-Entity Detection and Analysis.
    Ven K; Vanspauwen B; Pérez-Ruiz E; Leirs K; Decrop D; Gerstmans H; Spasic D; Lammertyn J
    ACS Sens; 2018 Feb; 3(2):264-284. PubMed ID: 29363316
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Droplet-based microfluidics in biomedical applications.
    Amirifar L; Besanjideh M; Nasiri R; Shamloo A; Nasrollahi F; de Barros NR; Davoodi E; Erdem A; Mahmoodi M; Hosseini V; Montazerian H; Jahangiry J; Darabi MA; Haghniaz R; Dokmeci MR; Annabi N; Ahadian S; Khademhosseini A
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34781274
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Whole-Teflon microfluidic chips.
    Ren K; Dai W; Zhou J; Su J; Wu H
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8162-6. PubMed ID: 21536918
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advances in Microfluidics-Based Technologies for Single Cell Culture.
    García Alonso D; Yu M; Qu H; Ma L; Shen F
    Adv Biosyst; 2019 Nov; 3(11):e1900003. PubMed ID: 32648694
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis.
    Lo SJ; Yao DJ
    Int J Mol Sci; 2015 Jul; 16(8):16763-77. PubMed ID: 26213918
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical and electrochemical detection techniques for cell-based microfluidic systems.
    Yi C; Zhang Q; Li CW; Yang J; Zhao J; Yang M
    Anal Bioanal Chem; 2006 Mar; 384(6):1259-68. PubMed ID: 16795144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interplay of surface interaction and magnetic torque in single-cell motion of magnetotactic bacteria in microfluidic confinement.
    Codutti A; Charsooghi MA; Cerdá-Doñate E; Taïeb HM; Robinson T; Faivre D; Klumpp S
    Elife; 2022 Jul; 11():. PubMed ID: 35852850
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.
    Konry T; Sarkar S; Sabhachandani P; Cohen N
    Annu Rev Biomed Eng; 2016 Jul; 18():259-84. PubMed ID: 26928209
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic technologies for drug discovery and development: friend or foe?
    Elvira KS
    Trends Pharmacol Sci; 2021 Jul; 42(7):518-526. PubMed ID: 33994176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research.
    Campbell JM; Balhoff JB; Landwehr GM; Rahman SM; Vaithiyanathan M; Melvin AT
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidic nanomaterials: From synthesis to biomedical applications.
    Illath K; Kar S; Gupta P; Shinde A; Wankhar S; Tseng FG; Lim KT; Nagai M; Santra TS
    Biomaterials; 2022 Jan; 280():121247. PubMed ID: 34801251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A microfluidic gradient device for drug screening with human iPSC-derived motoneurons.
    Mo SJ; Lee JH; Kye HG; Lee JM; Kim EJ; Geum D; Sun W; Chung BG
    Analyst; 2020 Apr; 145(8):3081-3089. PubMed ID: 32150196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Macro to nano: a simple method for transporting cultured cells from milliliter scale to nanoliter scale.
    Seale KT; Faley SL; Chamberlain J; Wikswo JP
    Exp Biol Med (Maywood); 2010 Jun; 235(6):777-83. PubMed ID: 20511682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical oxygen sensors for applications in microfluidic cell culture.
    Grist SM; Chrostowski L; Cheung KC
    Sensors (Basel); 2010; 10(10):9286-316. PubMed ID: 22163408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.