These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 20179826)
1. Nanofluidics, from bulk to interfaces. Bocquet L; Charlaix E Chem Soc Rev; 2010 Mar; 39(3):1073-95. PubMed ID: 20179826 [TBL] [Abstract][Full Text] [Related]
2. Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics. Höltzel A; Tallarek U J Sep Sci; 2007 Jul; 30(10):1398-419. PubMed ID: 17623420 [TBL] [Abstract][Full Text] [Related]
3. Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. Joly L; Ybert C; Trizac E; Bocquet L J Chem Phys; 2006 Nov; 125(20):204716. PubMed ID: 17144732 [TBL] [Abstract][Full Text] [Related]
4. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips. Zhang Q; Zhang M; Djeghlaf L; Bataille J; Gamby J; Haghiri-Gosnet AM; Pallandre A Electrophoresis; 2017 Apr; 38(7):953-976. PubMed ID: 28059451 [TBL] [Abstract][Full Text] [Related]
5. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716 [TBL] [Abstract][Full Text] [Related]
6. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip. Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395 [TBL] [Abstract][Full Text] [Related]
7. Physics and technological aspects of nanofluidics. Bocquet L; Tabeling P Lab Chip; 2014 Sep; 14(17):3143-58. PubMed ID: 25046581 [TBL] [Abstract][Full Text] [Related]
8. Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials. Duval JF; van Leeuwen HP Langmuir; 2004 Nov; 20(23):10324-36. PubMed ID: 15518532 [TBL] [Abstract][Full Text] [Related]
9. Nanofluidics and the chemical potential applied to solvent and solute transport. Eijkel JC; van den Berg A Chem Soc Rev; 2010 Mar; 39(3):957-73. PubMed ID: 20179818 [TBL] [Abstract][Full Text] [Related]
10. Electrokinetic transport and separations in fluidic nanochannels. Yuan Z; Garcia AL; Lopez GP; Petsev DN Electrophoresis; 2007 Feb; 28(4):595-610. PubMed ID: 17304495 [TBL] [Abstract][Full Text] [Related]
11. Molecular transport in nanopores: a theoretical perspective. Bhatia SK; Bonilla MR; Nicholson D Phys Chem Chem Phys; 2011 Sep; 13(34):15350-83. PubMed ID: 21750793 [TBL] [Abstract][Full Text] [Related]
12. Size-dependent hydrophobic to hydrophilic transition for nanoparticles: a molecular dynamics study. Chiu CC; Moore PB; Shinoda W; Nielsen SO J Chem Phys; 2009 Dec; 131(24):244706. PubMed ID: 20059098 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Abgrall P; Low LN; Nguyen NT Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971 [TBL] [Abstract][Full Text] [Related]
14. Effect of nanoparticles on the interfacial properties of liquid/liquid and liquid/air surface layers. Ravera F; Santini E; Loglio G; Ferrari M; Liggieri L J Phys Chem B; 2006 Oct; 110(39):19543-51. PubMed ID: 17004817 [TBL] [Abstract][Full Text] [Related]
15. Flaw tolerant bulk and surface nanostructures of biological systems. Gao H; Ji B; Buehler MJ; Yao H Mech Chem Biosyst; 2004 Mar; 1(1):37-52. PubMed ID: 16783945 [TBL] [Abstract][Full Text] [Related]
16. Oxygen-deficient perovskites: linking structure, energetics and ion transport. Stølen S; Bakken E; Mohn CE Phys Chem Chem Phys; 2006 Jan; 8(4):429-47. PubMed ID: 16482285 [TBL] [Abstract][Full Text] [Related]
17. Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics. Amani E; Movahed S Anal Chim Acta; 2016 Jun; 923():33-44. PubMed ID: 27155300 [TBL] [Abstract][Full Text] [Related]
18. Volume transport and generalized hydrodynamic equations for monatomic fluids. Eu BC J Chem Phys; 2008 Oct; 129(13):134509. PubMed ID: 19045107 [TBL] [Abstract][Full Text] [Related]
19. Molecular theory of hydrodynamic boundary conditions in nanofluidics. Kobryn AE; Kovalenko A J Chem Phys; 2008 Oct; 129(13):134701. PubMed ID: 19045110 [TBL] [Abstract][Full Text] [Related]
20. Ion size and image effect on electrokinetic flows. Liu Y; Liu M; Lau WM; Yang J Langmuir; 2008 Mar; 24(6):2884-91. PubMed ID: 18237199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]