These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Toner and paper-based fabrication techniques for microfluidic applications. Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911 [TBL] [Abstract][Full Text] [Related]
4. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Srinivasan V; Pamula VK; Fair RB Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796 [TBL] [Abstract][Full Text] [Related]
6. A new tool for routine testing of cellular protein expression: integration of cell staining and analysis of protein expression on a microfluidic chip-based system. Buhlmann C; Preckel T; Chan S; Luedke G; Valer M J Biomol Tech; 2003 Jun; 14(2):119-27. PubMed ID: 14676310 [TBL] [Abstract][Full Text] [Related]
7. Microfluidics for miniaturized laboratories on a chip. Franke TA; Wixforth A Chemphyschem; 2008 Oct; 9(15):2140-56. PubMed ID: 18932153 [TBL] [Abstract][Full Text] [Related]
8. Design of pressure-driven microfluidic networks using electric circuit analogy. Oh KW; Lee K; Ahn B; Furlani EP Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505 [TBL] [Abstract][Full Text] [Related]
9. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Samiei E; Tabrizian M; Hoorfar M Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540 [TBL] [Abstract][Full Text] [Related]
10. Fully integrated microfluidic separations systems for biochemical analysis. Roman GT; Kennedy RT J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293 [TBL] [Abstract][Full Text] [Related]
11. Cell immersion and cell dipping in microfluidic devices. Seger U; Gawad S; Johann R; Bertsch A; Renaud P Lab Chip; 2004 Apr; 4(2):148-51. PubMed ID: 15052356 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application. Chung KH; Hong JW; Lee DS; Yoon HC Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640 [TBL] [Abstract][Full Text] [Related]
13. PCR microfluidic devices for DNA amplification. Zhang C; Xu J; Ma W; Zheng W Biotechnol Adv; 2006; 24(3):243-84. PubMed ID: 16326063 [TBL] [Abstract][Full Text] [Related]
14. Centrifugal microfluidic platforms: advanced unit operations and applications. Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697 [TBL] [Abstract][Full Text] [Related]
15. Simulation-based analysis of fluid flow and electrokinetic phenomena in microfluidic devices. Krishnamoorthy S; Bedekar AS; Feng J; Sundaram S Clin Lab Med; 2007 Mar; 27(1):41-59. PubMed ID: 17416301 [TBL] [Abstract][Full Text] [Related]
16. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. Mirasoli M; Guardigli M; Michelini E; Roda A J Pharm Biomed Anal; 2014 Jan; 87():36-52. PubMed ID: 24268500 [TBL] [Abstract][Full Text] [Related]
17. Integration and detection of biochemical assays in digital microfluidic LOC devices. Malic L; Brassard D; Veres T; Tabrizian M Lab Chip; 2010 Feb; 10(4):418-31. PubMed ID: 20126681 [TBL] [Abstract][Full Text] [Related]
18. Advances in microfluidics for drug discovery. Lombardi D; Dittrich PS Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746 [TBL] [Abstract][Full Text] [Related]
19. Integrated microfluidic systems for DNA analysis. Njoroge SK; Chen HW; Witek MA; Soper SA Top Curr Chem; 2011; 304():203-60. PubMed ID: 21607848 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of lab-on chip platforms by hot embossing and photo patterning. Maurya DK; Ng WY; Mahabadi KA; Liang YN; RodrÃguez I Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]