BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20179900)

  • 1. Toxicity and biodegradation in sandy soil contaminated by lubricant oils.
    Lopes PR; Montagnolli RN; de Fátima Domingues R; Bidoia ED
    Bull Environ Contam Toxicol; 2010 Apr; 84(4):454-8. PubMed ID: 20179900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of polycyclic aromatic hydrocarbons from creosote-contaminated soil in selected plants and the oligochaete worm Enchytraeus crypticus.
    Allard AS; Malmberg M; Neilson AH; Remberger M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(11):2057-72. PubMed ID: 16287641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lability of polycyclic aromatic hydrocarbons in the rhizosphere.
    Cofield N; Banks MK; Schwab AP
    Chemosphere; 2008 Feb; 70(9):1644-52. PubMed ID: 17900653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological and Health Effects of Lubricant Oils Emitted into the Environment.
    Nowak P; Kucharska K; Kamiński M
    Int J Environ Res Public Health; 2019 Aug; 16(16):. PubMed ID: 31434340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of polycyclic aromatic hydrocarbons in manufactured gas plant-impacted soil.
    Spriggs T; Banks MK; Schwab P
    J Environ Qual; 2005; 34(5):1755-62. PubMed ID: 16151227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil.
    Juhasz AL; Smith E; Waller N; Stewart R; Weber J
    Environ Pollut; 2010 Feb; 158(2):585-91. PubMed ID: 19775788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil.
    Sasek V; Bhatt M; Cajthaml T; Malachová K; Lednická D
    Arch Environ Contam Toxicol; 2003 Apr; 44(3):336-42. PubMed ID: 12712293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus.
    Abioye OP; Agamuthu P; Abdul Aziz AR
    Biodegradation; 2012 Apr; 23(2):277-86. PubMed ID: 21870160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spent lubricant oil-contaminated soil toxicity to Eisenia andrei before and after bioremediation.
    Soroldoni S; Silva G; Correia FV; Marques M
    Ecotoxicology; 2019 Mar; 28(2):212-221. PubMed ID: 30627964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment.
    Joner EJ; Hirmann D; Szolar OH; Todorovic D; Leyval C; Loibner AP
    Environ Pollut; 2004; 128(3):429-35. PubMed ID: 14720484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.
    Li X; Li P; Lin X; Zhang C; Li Q; Gong Z
    J Hazard Mater; 2008 Jan; 150(1):21-6. PubMed ID: 17512657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation.
    Li X; Lin X; Li P; Liu W; Wang L; Ma F; Chukwuka KS
    J Hazard Mater; 2009 Dec; 172(2-3):601-5. PubMed ID: 19682791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil.
    Yuan SY; Shiung LC; Chang BV
    Bull Environ Contam Toxicol; 2002 Jul; 69(1):66-73. PubMed ID: 12053259
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of peanut oil on microbial degradation of polycyclic aromatic hydrocarbons.
    Pannu JK; Singh A; Ward OP
    Can J Microbiol; 2003 Aug; 49(8):508-13. PubMed ID: 14608386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils.
    Kreitinger JP; Quiñones-Rivera A; Neuhauser EF; Alexander M; Hawthorne SB
    Environ Toxicol Chem; 2007 Sep; 26(9):1809-17. PubMed ID: 17705650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Aging of spiked pyrene in two paddy soils and their particle-size fractions after soil incubation and changes in extractability and bio-availability to earthworm].
    Li JH; Pan GX
    Huan Jing Ke Xue; 2005 Nov; 26(6):131-6. PubMed ID: 16447446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioavailability of chemical pollutants in contaminated soils and pitfalls of chemical analyses in hazard assessment.
    Vasseur P; Bonnard M; Palais F; Eom IC; Morel JL
    Environ Toxicol; 2008 Oct; 23(5):652-6. PubMed ID: 18561306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation characteristics of waste lubricants under different nutrient conditions.
    Lee SH; Lee S; Kim DY; Kim JG
    J Hazard Mater; 2007 May; 143(1-2):65-72. PubMed ID: 17030092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microbial degradation of soil polycyclic aromatic hydrocarbons (PAHs) and its relations to soil bacterial population diversity].
    Wang F; Su ZC; Yang H; Li XJ; Yang GP; Dong DB
    Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3020-6. PubMed ID: 20353072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecotoxicity and biodegradability in soil and aqueous media of lubricants used in forestry applications.
    Cecutti C; Agius D
    Bioresour Technol; 2008 Nov; 99(17):8492-6. PubMed ID: 18472418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.