These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20180017)

  • 1. Spatial-temporal assessment and redesign of groundwater quality monitoring network: a case study.
    Owlia RR; Abrishamchi A; Tajrishy M
    Environ Monit Assess; 2011 Jan; 172(1-4):263-73. PubMed ID: 20180017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal redesign of groundwater quality monitoring networks: a case study.
    Masoumi F; Kerachian R
    Environ Monit Assess; 2010 Feb; 161(1-4):247-57. PubMed ID: 19199064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the groundwater salinity monitoring network of the Tehran region: application of the discrete entropy theory.
    Masoumi F; Kerachian R
    Water Sci Technol; 2008; 58(4):765-71. PubMed ID: 18776610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Groundwater monitoring plans at small-scale sites--an innovative spatial and temporal methodology.
    Ling M; Rifai HS; Newell CJ; Aziz JJ; Gonzales JR
    J Environ Monit; 2003 Feb; 5(1):126-34. PubMed ID: 12619767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.
    Hosseini M; Kerachian R
    Environ Monit Assess; 2017 Sep; 189(9):433. PubMed ID: 28779429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.
    Moreau-Fournier MF; Daughney CJ
    J Environ Monit; 2012 Dec; 14(12):3129-36. PubMed ID: 23104002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revising river water quality monitoring networks using discrete entropy theory: the Jajrood River experience.
    Mahjouri N; Kerachian R
    Environ Monit Assess; 2011 Apr; 175(1-4):291-302. PubMed ID: 20499162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy-based assessment of groundwater intrinsic vulnerability of a volcanic aquifer in the Chilean Andean Valley.
    Duhalde DJ; Arumí JL; Oyarzún RA; Rivera DA
    Environ Monit Assess; 2018 Jun; 190(7):390. PubMed ID: 29892906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal expansion of water quality monitoring network by fuzzy optimization approach.
    Ning SK; Chang NB
    Environ Monit Assess; 2004 Feb; 91(1-3):145-70. PubMed ID: 14969441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fuzzy Markov approach for assessing groundwater pollution potential for landfill siting.
    Chen WY; Kao JJ
    Waste Manag Res; 2002 Apr; 20(2):187-97. PubMed ID: 12058824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of on-line river water quality monitoring systems using the entropy theory: a case study.
    Karamouz M; Nokhandan AK; Kerachian R; Maksimovic C
    Environ Monit Assess; 2009 Aug; 155(1-4):63-81. PubMed ID: 18663591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semivariance analysis and transinformation entropy for optimal redesigning of nutrients monitoring network in San Francisco bay.
    Boroumand A; Rajaee T; Masoumi F
    Mar Pollut Bull; 2018 Apr; 129(2):689-694. PubMed ID: 29096974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran).
    Razmkhah H; Abrishamchi A; Torkian A
    J Environ Manage; 2010; 91(4):852-60. PubMed ID: 20056527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of spatial and temporal hydrochemical changes in groundwater under the contaminating effects of anthropogenic activities in Mersin region, Turkey.
    Demirel Z; Külege K
    Environ Monit Assess; 2005 Feb; 101(1-3):129-45. PubMed ID: 15736881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal space-time coverage and exploration costs in groundwater monitoring networks.
    Nunes LM; Cunha MC; Ribeiro L
    Environ Monit Assess; 2004; 93(1-3):103-24. PubMed ID: 15074612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of methods for the detection and extrapolation of trends in groundwater quality.
    Visser A; Dubus I; Broers HP; Brouyère S; Korcz M; Orban P; Goderniaux P; Batlle-Aguilar J; Surdyk N; Amraoui N; Job H; Pinault JL; Bierkens M
    J Environ Monit; 2009 Nov; 11(11):2030-43. PubMed ID: 19890560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fuzzy logic approach to assess groundwater pollution levels below agricultural fields.
    Muhammetoglu A; Yardimci A
    Environ Monit Assess; 2006 Jul; 118(1-3):337-54. PubMed ID: 16897549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A water quality monitoring network design methodology for the selection of critical sampling points: Part I.
    Strobl RO; Robillard PD; Shannon RD; Day RL; McDonnell AJ
    Environ Monit Assess; 2006 Jan; 112(1-3):137-58. PubMed ID: 16404538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory.
    Nazeri Tahroudi M; Khashei Siuki A; Ramezani Y
    Environ Monit Assess; 2019 Mar; 191(4):250. PubMed ID: 30919110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing water quality in rivers with fuzzy inference systems: a case study.
    Ocampo-Duque W; Ferré-Huguet N; Domingo JL; Schuhmacher M
    Environ Int; 2006 Aug; 32(6):733-42. PubMed ID: 16678900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.