BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20180422)

  • 21. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer.
    Stanbrough M; Bubley GJ; Ross K; Golub TR; Rubin MA; Penning TM; Febbo PG; Balk SP
    Cancer Res; 2006 Mar; 66(5):2815-25. PubMed ID: 16510604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression profiling of androgen-dependent and -independent LNCaP cells: EGF versus androgen signalling.
    Oosterhoff JK; Grootegoed JA; Blok LJ
    Endocr Relat Cancer; 2005 Mar; 12(1):135-48. PubMed ID: 15788645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rap2 regulates androgen sensitivity in human prostate cancer cells.
    Bigler D; Gioeli D; Conaway MR; Weber MJ; Theodorescu D
    Prostate; 2007 Oct; 67(14):1590-9. PubMed ID: 17918750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differentiation of androgen-independent prostate cancer PC-3 cells is associated with increased nuclear factor-kappaB activity.
    Floryk D; Huberman E
    Cancer Res; 2005 Dec; 65(24):11588-96. PubMed ID: 16357169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 5alpha-androstane-3alpha,17beta-diol supports human prostate cancer cell survival and proliferation through androgen receptor-independent signaling pathways: implication of androgen-independent prostate cancer progression.
    Yang Q; Titus MA; Fung KM; Lin HK
    J Cell Biochem; 2008 Aug; 104(5):1612-24. PubMed ID: 18320593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone extracellular matrix induces homeobox proteins independent of androgens: possible mechanism for androgen-independent growth in human prostate cancer cells.
    Robbins SE; Shu WP; Kirschenbaum A; Levine AC; Miniati DN; Liu BC
    Prostate; 1996 Dec; 29(6):362-70. PubMed ID: 8977633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Androgens, lipogenesis and prostate cancer.
    Swinnen JV; Heemers H; van de Sande T; de Schrijver E; Brusselmans K; Heyns W; Verhoeven G
    J Steroid Biochem Mol Biol; 2004 Nov; 92(4):273-9. PubMed ID: 15663990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hedgehog signalling in androgen independent prostate cancer.
    Shaw G; Price AM; Ktori E; Bisson I; Purkis PE; McFaul S; Oliver RT; Prowse DM
    Eur Urol; 2008 Dec; 54(6):1333-43. PubMed ID: 18262716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. hCAP-D3 expression marks a prostate cancer subtype with favorable clinical behavior and androgen signaling signature.
    Lapointe J; Malhotra S; Higgins JP; Bair E; Thompson M; Salari K; Giacomini CP; Ferrari M; Montgomery K; Tibshirani R; van de Rijn M; Brooks JD; Pollack JR
    Am J Surg Pathol; 2008 Feb; 32(2):205-9. PubMed ID: 18223322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene microarray assessment of multiple genes and signal pathways involved in androgen-dependent prostate cancer becoming androgen independent.
    Liu JB; Dai CM; Su XY; Cao L; Qin R; Kong QB
    Asian Pac J Cancer Prev; 2014; 15(22):9791-5. PubMed ID: 25520106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression.
    Vijayvargia R; May MS; Fondell JD
    Cancer Res; 2007 May; 67(9):4034-41. PubMed ID: 17483314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-independent prostate cancer cell lines.
    Tørring N; Jørgensen PE; Sørensen BS; Nexø E
    Anticancer Res; 2000; 20(1A):91-5. PubMed ID: 10769639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased lipogenesis in steroid-responsive cancer cells: mechanisms of regulation, role in cancer cell biology and perspectives on clinical applications.
    Swinnen JV
    Verh K Acad Geneeskd Belg; 2001; 63(4):321-33. PubMed ID: 11603058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells.
    Sadar MD; Gleave ME
    Cancer Res; 2000 Oct; 60(20):5825-31. PubMed ID: 11059779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer.
    Zerbini LF; Wang Y; Cho JY; Libermann TA
    Cancer Res; 2003 May; 63(9):2206-15. PubMed ID: 12727841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel expressed sequences identified in a model of androgen independent prostate cancer.
    Quayle SN; Hare H; Delaney AD; Hirst M; Hwang D; Schein JE; Jones SJ; Marra MA; Sadar MD
    BMC Genomics; 2007 Jan; 8():32. PubMed ID: 17257419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of the androgen receptor pathway during progression of prostate cancer.
    Hendriksen PJ; Dits NF; Kokame K; Veldhoven A; van Weerden WM; Bangma CH; Trapman J; Jenster G
    Cancer Res; 2006 May; 66(10):5012-20. PubMed ID: 16707422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of c-Jun and c-Fos expression in androgen-independent prostate cancer.
    Edwards J; Krishna NS; Mukherjee R; Bartlett JM
    J Pathol; 2004 Oct; 204(2):153-8. PubMed ID: 15378488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TabBO: a model reflecting common molecular features of androgen-independent prostate cancer.
    Navone NM; Rodriquez-Vargas MC; Benedict WF; Troncoso P; McDonnell TJ; Zhou JH; Luthra R; Logothetis CJ
    Clin Cancer Res; 2000 Mar; 6(3):1190-7. PubMed ID: 10741751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms.
    Schröder FH
    Eur Urol; 2008 Jun; 53(6):1129-37. PubMed ID: 18262723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.