These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 20180513)
1. Switching from altro-alpha-cyclodextrin dimer to pseudo[1]rotaxane dimer through tumbling. Yamauchi K; Miyawaki A; Takashima Y; Yamaguchi H; Harada A Org Lett; 2010 Mar; 12(6):1284-6. PubMed ID: 20180513 [TBL] [Abstract][Full Text] [Related]
2. A molecular reel: shuttling of a rotor by tumbling of a macrocycle. Yamauchi K; Miyawaki A; Takashima Y; Yamaguchi H; Harada A J Org Chem; 2010 Feb; 75(4):1040-6. PubMed ID: 20073513 [TBL] [Abstract][Full Text] [Related]
3. Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. Miyawaki A; Kuad P; Takashima Y; Yamaguchi H; Harada A J Am Chem Soc; 2008 Dec; 130(50):17062-9. PubMed ID: 19053429 [TBL] [Abstract][Full Text] [Related]
4. Relative rotational motion between alpha-Cyclodextrin Derivatives and a stiff axle molecule. Nishimura D; Oshikiri T; Takashima Y; Hashidzume A; Yamaguchi H; Harada A J Org Chem; 2008 Apr; 73(7):2496-502. PubMed ID: 18336039 [TBL] [Abstract][Full Text] [Related]
5. Face-selective [2]- and [3]rotaxanes: kinetic control of the threading direction of cyclodextrins. Oshikiri T; Takashima Y; Yamaguchi H; Harada A Chemistry; 2007; 13(25):7091-8. PubMed ID: 17563911 [TBL] [Abstract][Full Text] [Related]
6. Structural, energetic, and dynamical properties of rotaxanes constituted of alpha-cyclodextrins and an azobenzene chain. Briquet L; Staelens N; Leherte L; Vercauteren DP J Mol Graph Model; 2007 Jul; 26(1):104-16. PubMed ID: 17161967 [TBL] [Abstract][Full Text] [Related]
7. Switching between supramolecular dimer and nonthreaded supramolecular self-assembly of stilbene amide-alpha-cyclodextrin by photoirradiation. Yamauchi K; Takashima Y; Hashidzume A; Yamaguchi H; Harada A J Am Chem Soc; 2008 Apr; 130(15):5024-5. PubMed ID: 18335989 [TBL] [Abstract][Full Text] [Related]
8. Photoresponsive formation of pseudo[2]rotaxane with cyclodextrin derivatives. Wang Z; Takashima Y; Yamaguchi H; Harada A Org Lett; 2011 Aug; 13(16):4356-9. PubMed ID: 21774508 [TBL] [Abstract][Full Text] [Related]
9. Preparation of alpha-cyclodextrin-terminated polyrotaxane consisting of beta-cyclodextrins and pluronic as a building block of a biodegradable network. Ooya T; Ito A; Yui N Macromol Biosci; 2005 May; 5(5):379-83. PubMed ID: 15895475 [TBL] [Abstract][Full Text] [Related]
10. Theoretical study of the alpha-cyclodextrin dimer. Nascimento CS; Anconi CP; Dos Santos HF; De Almeida WB J Phys Chem A; 2005 Apr; 109(14):3209-19. PubMed ID: 16833650 [TBL] [Abstract][Full Text] [Related]
11. Selection between pinching-type and supramolecular polymer-type complexes by alpha-cyclodextrin-beta-cyclodextrin hetero-dimer and hetero-cinnamamide guest dimers. Takahashi H; Takashima Y; Yamaguchi H; Harada A J Org Chem; 2006 Jun; 71(13):4878-83. PubMed ID: 16776516 [TBL] [Abstract][Full Text] [Related]
12. Photoconductive properties of a π-conjugated α-cyclodextrin containing [2]rotaxane and its corresponding molecular dumbbell. Deligkiozi I; Papadakis R; Tsolomitis A Phys Chem Chem Phys; 2013 Mar; 15(10):3497-503. PubMed ID: 23361123 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes. Chwalek M; Auzély R; Fort S Org Biomol Chem; 2009 Apr; 7(8):1680-8. PubMed ID: 19343257 [TBL] [Abstract][Full Text] [Related]
14. Double-threaded dimer and supramolecular oligomer formed by stilbene modified cyclodextrin: effect of acyl migration and photostimuli. Kanaya A; Takashima Y; Harada A J Org Chem; 2011 Jan; 76(2):492-9. PubMed ID: 21182268 [TBL] [Abstract][Full Text] [Related]
15. The effect of α-cyclodextrin on poly(pseudo)rotaxane nanoparticles self-assembled by protoporphyrin modified poly(ethylene glycol) for anticancer drug delivery. Xu T; Li J; Cao J; Gao W; Li L; He B Carbohydr Polym; 2017 Oct; 174():789-797. PubMed ID: 28821132 [TBL] [Abstract][Full Text] [Related]
16. Unraveling unidirectional threading of α-cyclodextrin in a [2]rotaxane through spin labeling approach. Casati C; Franchi P; Pievo R; Mezzina E; Lucarini M J Am Chem Soc; 2012 Nov; 134(46):19108-17. PubMed ID: 23106205 [TBL] [Abstract][Full Text] [Related]
17. Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane. Onagi H; Blake CJ; Easton CJ; Lincoln SF Chemistry; 2003 Dec; 9(24):5978-88. PubMed ID: 14679510 [TBL] [Abstract][Full Text] [Related]
18. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes. Tachibana Y; Kawasaki H; Kihara N; Takata T J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers. Yang C; Wang X; Li H; Goh SH; Li J Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967 [TBL] [Abstract][Full Text] [Related]
20. The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. Dawson RE; Lincoln SF; Easton CJ Chem Commun (Camb); 2008 Sep; (34):3980-2. PubMed ID: 18758599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]