BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20180847)

  • 1. Biochemical properties of the human guanylate binding protein 5 and a tumor-specific truncated splice variant.
    Wehner M; Herrmann C
    FEBS J; 2010 Apr; 277(7):1597-605. PubMed ID: 20180847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif.
    Praefcke GJ; Geyer M; Schwemmle M; Robert Kalbitzer H; Herrmann C
    J Mol Biol; 1999 Sep; 292(2):321-32. PubMed ID: 10493878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide binding and self-stimulated GTPase activity of human guanylate-binding protein 1 (hGBP1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    Methods Enzymol; 2005; 404():512-27. PubMed ID: 16413296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of GTPase-activity-induced self-assembly of human guanylate binding protein 1.
    Vöpel T; Syguda A; Britzen-Laurent N; Kunzelmann S; Lüdemann MB; Dovengerds C; Stürzl M; Herrmann C
    J Mol Biol; 2010 Jul; 400(1):63-70. PubMed ID: 20450919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis.
    Praefcke GJ; Kloep S; Benscheid U; Lilie H; Prakash B; Herrmann C
    J Mol Biol; 2004 Nov; 344(1):257-69. PubMed ID: 15504415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The guanine cap of human guanylate-binding protein 1 is responsible for dimerization and self-activation of GTP hydrolysis.
    Wehner M; Kunzelmann S; Herrmann C
    FEBS J; 2012 Jan; 279(2):203-10. PubMed ID: 22059445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of individual domains and identification of internal gap in human guanylate binding protein-1.
    Abdullah N; Srinivasan B; Modiano N; Cresswell P; Sau AK
    J Mol Biol; 2009 Feb; 386(3):690-703. PubMed ID: 19150356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide dependent cysteine reactivity of hGBP1 uncovers a domain movement during GTP hydrolysis.
    Vöpel T; Kunzelmann S; Herrmann C
    FEBS Lett; 2009 Jun; 583(12):1923-7. PubMed ID: 19463820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins.
    Prakash B; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2000 Feb; 403(6769):567-71. PubMed ID: 10676968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interaction of the Ras effector RASSF5 with the tyrosine kinase Lck: critical role in nucleocytoplasmic transport and cell cycle regulation.
    Kumari G; Singhal PK; Suryaraja R; Mahalingam S
    J Mol Biol; 2010 Mar; 397(1):89-109. PubMed ID: 20064523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient kinetic investigation of GTP hydrolysis catalyzed by interferon-gamma-induced hGBP1 (human guanylate binding protein 1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    J Biol Chem; 2006 Sep; 281(39):28627-35. PubMed ID: 16873363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: implications for GTP hydrolysis.
    Mishra R; Gara SK; Mishra S; Prakash B
    Proteins; 2005 May; 59(2):332-8. PubMed ID: 15726588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the ERC motif in the proximal part of the second intracellular loop and the C-terminal domain of the human prostaglandin F2alpha receptor (hFP-R) in G-protein coupling control.
    Pathe-Neuschäfer-Rube A; Neuschäfer-Rube F; Püschel GP
    Biochem J; 2005 May; 388(Pt 1):317-24. PubMed ID: 15651980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases.
    Gosser YQ; Nomanbhoy TK; Aghazadeh B; Manor D; Combs C; Cerione RA; Rosen MK
    Nature; 1997 Jun; 387(6635):814-9. PubMed ID: 9194563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetramerization of human guanylate-binding protein 1 is mediated by coiled-coil formation of the C-terminal α-helices.
    Syguda A; Bauer M; Benscheid U; Ostler N; Naschberger E; Ince S; Stürzl M; Herrmann C
    FEBS J; 2012 Jul; 279(14):2544-54. PubMed ID: 22607347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrameric assembly of hGBP1 is crucial for both stimulated GMP formation and antiviral activity.
    Pandita E; Rajan S; Rahman S; Mullick R; Das S; Sau AK
    Biochem J; 2016 Jun; 473(12):1745-57. PubMed ID: 27071416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.
    Abdul-Manan N; Aghazadeh B; Liu GA; Majumdar A; Ouerfelli O; Siminovitch KA; Rosen MK
    Nature; 1999 May; 399(6734):379-83. PubMed ID: 10360578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI.
    Golovanov AP; Chuang TH; DerMardirossian C; Barsukov I; Hawkins D; Badii R; Bokoch GM; Lian LY; Roberts GC
    J Mol Biol; 2001 Jan; 305(1):121-35. PubMed ID: 11114252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and biochemical properties of Rac1, 2, 3 and the splice variant Rac1b.
    Haeusler LC; Hemsath L; Fiegen D; Blumenstein L; Herbrand U; Stege P; Dvorsky R; Ahmadian MR
    Methods Enzymol; 2006; 406():1-11. PubMed ID: 16472645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.