These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20181233)

  • 1. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles.
    Kitchen RR; Sabine VS; Sims AH; Macaskill EJ; Renshaw L; Thomas JS; van Hemert JI; Dixon JM; Bartlett JM
    BMC Genomics; 2010 Feb; 11():134. PubMed ID: 20181233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments.
    Kitchen RR; Sabine VS; Simen AA; Dixon JM; Bartlett JM; Sims AH
    BMC Genomics; 2011 Dec; 12():589. PubMed ID: 22133085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical Bayes accomodation of batch-effects in microarray data using identical replicate reference samples: application to RNA expression profiling of blood from Duchenne muscular dystrophy patients.
    Walker WL; Liao IH; Gilbert DL; Wong B; Pollard KS; McCulloch CE; Lit L; Sharp FR
    BMC Genomics; 2008 Oct; 9():494. PubMed ID: 18937867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal Reference RNA as a standard for microarray experiments.
    Novoradovskaya N; Whitfield ML; Basehore LS; Novoradovsky A; Pesich R; Usary J; Karaca M; Wong WK; Aprelikova O; Fero M; Perou CM; Botstein D; Braman J
    BMC Genomics; 2004 Mar; 5(1):20. PubMed ID: 15113400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data.
    Müller C; Schillert A; Röthemeier C; Trégouët DA; Proust C; Binder H; Pfeiffer N; Beutel M; Lackner KJ; Schnabel RB; Tiret L; Wild PS; Blankenberg S; Zeller T; Ziegler A
    PLoS One; 2016; 11(6):e0156594. PubMed ID: 27272489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication, variation and normalisation in microarray experiments.
    Altman N
    Appl Bioinformatics; 2005; 4(1):33-44. PubMed ID: 16000011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
    Schurmann C; Heim K; Schillert A; Blankenberg S; Carstensen M; Dörr M; Endlich K; Felix SB; Gieger C; Grallert H; Herder C; Hoffmann W; Homuth G; Illig T; Kruppa J; Meitinger T; Müller C; Nauck M; Peters A; Rettig R; Roden M; Strauch K; Völker U; Völzke H; Wahl S; Wallaschofski H; Wild PS; Zeller T; Teumer A; Prokisch H; Ziegler A
    PLoS One; 2012; 7(12):e50938. PubMed ID: 23236413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Batch effect correction for genome-wide methylation data with Illumina Infinium platform.
    Sun Z; Chai HS; Wu Y; White WM; Donkena KV; Klein CJ; Garovic VD; Therneau TM; Kocher JP
    BMC Med Genomics; 2011 Dec; 4():84. PubMed ID: 22171553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct integration of intensity-level data from Affymetrix and Illumina microarrays improves statistical power for robust reanalysis.
    Turnbull AK; Kitchen RR; Larionov AA; Renshaw L; Dixon JM; Sims AH
    BMC Med Genomics; 2012 Aug; 5():35. PubMed ID: 22909195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjusting batch effects in microarray expression data using empirical Bayes methods.
    Johnson WE; Li C; Rabinovic A
    Biostatistics; 2007 Jan; 8(1):118-27. PubMed ID: 16632515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinically validated benchmarking of normalisation techniques for two-colour oligonucleotide spotted microarray slides.
    Listgarten J; Graham K; Damaraju S; Cass C; Mackey J; Zanke B
    Appl Bioinformatics; 2003; 2(4):219-28. PubMed ID: 15130793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying and correcting epigenetics measurements for systematic sources of variation.
    Perrier F; Novoloaca A; Ambatipudi S; Baglietto L; Ghantous A; Perduca V; Barrdahl M; Harlid S; Ong KK; Cardona A; Polidoro S; Nøst TH; Overvad K; Omichessan H; Dollé M; Bamia C; Huerta JM; Vineis P; Herceg Z; Romieu I; Ferrari P
    Clin Epigenetics; 2018; 10():38. PubMed ID: 29588806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of variance components in gene expression data.
    Chen JJ; Delongchamp RR; Tsai CA; Hsueh HM; Sistare F; Thompson KL; Desai VG; Fuscoe JC
    Bioinformatics; 2004 Jun; 20(9):1436-46. PubMed ID: 14962916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays.
    Wang Y; Barbacioru C; Hyland F; Xiao W; Hunkapiller KL; Blake J; Chan F; Gonzalez C; Zhang L; Samaha RR
    BMC Genomics; 2006 Mar; 7():59. PubMed ID: 16551369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods.
    Chen C; Grennan K; Badner J; Zhang D; Gershon E; Jin L; Liu C
    PLoS One; 2011 Feb; 6(2):e17238. PubMed ID: 21386892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments.
    Schneider J; Buness A; Huber W; Volz J; Kioschis P; Hafner M; Poustka A; Sültmann H
    BMC Genomics; 2004 Apr; 5(1):29. PubMed ID: 15119961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data.
    Luo J; Schumacher M; Scherer A; Sanoudou D; Megherbi D; Davison T; Shi T; Tong W; Shi L; Hong H; Zhao C; Elloumi F; Shi W; Thomas R; Lin S; Tillinghast G; Liu G; Zhou Y; Herman D; Li Y; Deng Y; Fang H; Bushel P; Woods M; Zhang J
    Pharmacogenomics J; 2010 Aug; 10(4):278-91. PubMed ID: 20676067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating ComBat: how batch correction can lead to the systematic introduction of false positive results in DNA methylation microarray studies.
    Zindler T; Frieling H; Neyazi A; Bleich S; Friedel E
    BMC Bioinformatics; 2020 Jun; 21(1):271. PubMed ID: 32605541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE).
    Xia Q; Thompson JA; Koestler DC
    Stat Appl Genet Mol Biol; 2021 Dec; 20(4-6):101-119. PubMed ID: 34905304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data.
    Chen JJ; Hsueh HM; Delongchamp RR; Lin CJ; Tsai CA
    BMC Bioinformatics; 2007 Oct; 8():412. PubMed ID: 17961233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.