These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 20181237)
1. Reconstructing genome trees of prokaryotes using overlapping genes. Cheng CH; Yang CH; Chiu HT; Lu CL BMC Bioinformatics; 2010 Feb; 11():102. PubMed ID: 20181237 [TBL] [Abstract][Full Text] [Related]
2. OGtree: a tool for creating genome trees of prokaryotes based on overlapping genes. Jiang LW; Lin KL; Lu CL Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W475-80. PubMed ID: 18456706 [TBL] [Abstract][Full Text] [Related]
3. BPhyOG: an interactive server for genome-wide inference of bacterial phylogenies based on overlapping genes. Luo Y; Fu C; Zhang DY; Lin K BMC Bioinformatics; 2007 Jul; 8():266. PubMed ID: 17650344 [TBL] [Abstract][Full Text] [Related]
4. SoRT2: a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations. Huang YL; Huang CC; Tang CY; Lu CL Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W221-7. PubMed ID: 20538651 [TBL] [Abstract][Full Text] [Related]
5. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals. Heydari M; Marashi SA; Tusserkani R; Sadeghi M Biosystems; 2014 Oct; 124():86-94. PubMed ID: 25195150 [TBL] [Abstract][Full Text] [Related]
6. ComPhy: prokaryotic composite distance phylogenies inferred from whole-genome gene sets. Lin GN; Cai Z; Lin G; Chakraborty S; Xu D BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S5. PubMed ID: 19208152 [TBL] [Abstract][Full Text] [Related]
7. Genome trees constructed using five different approaches suggest new major bacterial clades. Wolf YI; Rogozin IB; Grishin NV; Tatusov RL; Koonin EV BMC Evol Biol; 2001 Oct; 1():8. PubMed ID: 11734060 [TBL] [Abstract][Full Text] [Related]
8. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. Gillespie JJ; Williams K; Shukla M; Snyder EE; Nordberg EK; Ceraul SM; Dharmanolla C; Rainey D; Soneja J; Shallom JM; Vishnubhat ND; Wattam R; Purkayastha A; Czar M; Crasta O; Setubal JC; Azad AF; Sobral BS PLoS One; 2008; 3(4):e2018. PubMed ID: 19194535 [TBL] [Abstract][Full Text] [Related]
9. CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Xu Z; Hao B Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W174-8. PubMed ID: 19398429 [TBL] [Abstract][Full Text] [Related]
10. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. Auch AF; Henz SR; Holland BR; Göker M BMC Bioinformatics; 2006 Jul; 7():350. PubMed ID: 16854218 [TBL] [Abstract][Full Text] [Related]
11. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes. Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169 [TBL] [Abstract][Full Text] [Related]
12. PairWise Neighbours database: overlaps and spacers among prokaryote genomes. Pallejà A; Reverter T; Garcia-Vallvé S; Romeu A BMC Genomics; 2009 Jun; 10():281. PubMed ID: 19555467 [TBL] [Abstract][Full Text] [Related]
13. Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences. Satoh S; Mimuro M; Tanaka A PLoS One; 2013; 8(7):e70290. PubMed ID: 23922968 [TBL] [Abstract][Full Text] [Related]
14. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions. Zhang YC; Lin K Evol Bioinform Online; 2015; 11(Suppl 2):1-9. PubMed ID: 26715828 [TBL] [Abstract][Full Text] [Related]
15. Taxonium, a web-based tool for exploring large phylogenetic trees. Sanderson T Elife; 2022 Nov; 11():. PubMed ID: 36377483 [TBL] [Abstract][Full Text] [Related]
16. A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions. Bader M; Abouelhoda MI; Ohlebusch E BMC Bioinformatics; 2008 Dec; 9():516. PubMed ID: 19055792 [TBL] [Abstract][Full Text] [Related]
17. SPRING: a tool for the analysis of genome rearrangement using reversals and block-interchanges. Lin YC; Lu CL; Liu YC; Tang CY Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W696-9. PubMed ID: 16845100 [TBL] [Abstract][Full Text] [Related]
18. Measuring genome conservation across taxa: divided strains and united kingdoms. Kunin V; Ahren D; Goldovsky L; Janssen P; Ouzounis CA Nucleic Acids Res; 2005; 33(2):616-21. PubMed ID: 15681613 [TBL] [Abstract][Full Text] [Related]
19. Assembling contigs in draft genomes using reversals and block-interchanges. Li CL; Chen KT; Lu CL BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S9. PubMed ID: 23734866 [TBL] [Abstract][Full Text] [Related]
20. Phylogenetic Reconstruction Based on Synteny Block and Gene Adjacencies. Drillon G; Champeimont R; Oteri F; Fischer G; Carbone A Mol Biol Evol; 2020 Sep; 37(9):2747-2762. PubMed ID: 32384156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]