BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2018125)

  • 1. Glucose consumption decreases throughout the brain only hours after portacaval shunting.
    DeJoseph MR; Hawkins RA
    Am J Physiol; 1991 Apr; 260(4 Pt 1):E613-9. PubMed ID: 2018125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperammonaemia depresses glucose consumption throughout the brain.
    Jessy J; DeJoseph MR; Hawkins RA
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):693-6. PubMed ID: 1872805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of portacaval shunting normalizes brain energy consumption in most brain structures.
    Hawkins PA; DeJoseph MR; Hawkins RA
    Am J Physiol; 1996 Dec; 271(6 Pt 1):E1015-20. PubMed ID: 8997220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early establishment of cerebral dysfunction after portacaval shunting.
    Mans AM; DeJoseph MR; Davis DW; Viña JR; Hawkins RA
    Am J Physiol; 1990 Jul; 259(1 Pt 1):E104-10. PubMed ID: 2372051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain glucose levels in portacaval-shunted rats with chronic, moderate hyperammonemia: implications for determination of local cerebral glucose utilization.
    Cruz NF; Dienel GA
    J Cereb Blood Flow Metab; 1994 Jan; 14(1):113-24. PubMed ID: 8263046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal rhythm returns to normal after elimination of portacaval shunting.
    Hawkins PA; DeJoseph MR; Hawkins RA
    Am J Physiol; 1998 Mar; 274(3):E426-31. PubMed ID: 9530124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local cerebral glucose metabolism in rats with chronic portacaval shunts.
    Cruz NF; Duffy TE
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):311-20. PubMed ID: 6874740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional cerebral glucose utilization in rats with portacaval anastomosis.
    Mans AM; Biebuyck JF; Davis DW; Bryan RM; Hawkins RA
    J Neurochem; 1983 Apr; 40(4):986-91. PubMed ID: 6834056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeling of metabolic pools by [6-14C]glucose during K(+)-induced stimulation of glucose utilization in rat brain.
    Adachi K; Cruz NF; Sokoloff L; Dienel GA
    J Cereb Blood Flow Metab; 1995 Jan; 15(1):97-110. PubMed ID: 7798343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperammonaemia causes many of the changes found after portacaval shunting.
    Jessy J; Mans AM; DeJoseph MR; Hawkins RA
    Biochem J; 1990 Dec; 272(2):311-7. PubMed ID: 1702623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional blood-brain barrier transport of ketone bodies in portacaval-shunted rats.
    Hawkins RA; Mans AM
    Am J Physiol; 1991 Nov; 261(5 Pt 1):E647-52. PubMed ID: 1951691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy.
    Hawkins RA; Jessy J; Mans AM; De Joseph MR
    J Neurochem; 1993 Mar; 60(3):1000-6. PubMed ID: 8436955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portacaval anastomosis results in more widespread alterations of cerebral metabolism in old versus young adult rats: implications for post-shunt encephalopathy.
    Audet RM; Butterworth RF
    Metab Brain Dis; 1998 Mar; 13(1):69-78. PubMed ID: 9570641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the metabolic disturbances caused by end-to-side and side-to-side portacaval shunts.
    Hawkins PA; DeJoseph MR; Viña JR; Hawkins RA
    J Appl Physiol (1985); 1996 Mar; 80(3):885-91. PubMed ID: 8964752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental model of generalized seizures for the measurement of local cerebral glucose utilization in the immature rat. II. Mapping of brain metabolism using the quantitative [14C]2-deoxyglucose technique.
    Pereira de Vasconcelos A; el Hamdi G; Vert P; Nehlig A
    Brain Res Dev Brain Res; 1992 Oct; 69(2):243-59. PubMed ID: 1424100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure of glucose and branched-chain amino acids to normalize brain glucose use in portacaval shunted rats.
    Mans AM; Davis DW; Biebuyck JF; Hawkins RA
    J Neurochem; 1986 Nov; 47(5):1434-43. PubMed ID: 2428933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral glucose metabolism after portacaval shunting in the rat. Patterns of metabolism and implications for the pathogenesis of hepatic encephalopathy.
    Lockwood AH; Ginsberg MD; Rhoades HM; Gutierrez MT
    J Clin Invest; 1986 Jul; 78(1):86-95. PubMed ID: 3722388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the measurement of regional cerebral glucose consumption with [6-14C]glucose.
    Hawkins RA; Hawkins PA; Mans AM; Viña JR; DeJoseph MR
    J Neurosci Methods; 1994 Sep; 54(1):49-62. PubMed ID: 7815819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA Receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat.
    Gilland E; Hagberg H
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1005-13. PubMed ID: 8784246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nicotine withdrawal on the local cerebral glucose utilization in conscious rats.
    Schröck H; Kuschinsky W
    Brain Res; 1991 Apr; 545(1-2):234-8. PubMed ID: 1860047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.