These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20181280)

  • 1. Flux of transcript patterns during soybean seed development.
    Jones SI; Gonzalez DO; Vodkin LO
    BMC Genomics; 2010 Feb; 11():136. PubMed ID: 20181280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using RNA-Seq to profile soybean seed development from fertilization to maturity.
    Jones SI; Vodkin LO
    PLoS One; 2013; 8(3):e59270. PubMed ID: 23555009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant.
    Vodkin LO; Khanna A; Shealy R; Clough SJ; Gonzalez DO; Philip R; Zabala G; Thibaud-Nissen F; Sidarous M; Strömvik MV; Shoop E; Schmidt C; Retzel E; Erpelding J; Shoemaker RC; Rodriguez-Huete AM; Polacco JC; Coryell V; Keim P; Gong G; Liu L; Pardinas J; Schweitzer P
    BMC Genomics; 2004 Sep; 5():73. PubMed ID: 15453914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development.
    Qi Z; Zhang Z; Wang Z; Yu J; Qin H; Mao X; Jiang H; Xin D; Yin Z; Zhu R; Liu C; Yu W; Hu Z; Wu X; Liu J; Chen Q
    Plant Cell Environ; 2018 Sep; 41(9):2109-2127. PubMed ID: 29486529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.
    Yuan F; Yu X; Dong D; Yang Q; Fu X; Zhu S; Zhu D
    BMC Plant Biol; 2017 Jan; 17(1):16. PubMed ID: 28100173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A seed germination transcriptomic study contrasting two soybean genotypes that differ in terms of their tolerance to the deleterious impacts of elevated temperatures during seed fill.
    Gillman JD; Biever JJ; Ye S; Spollen WG; Givan SA; Lyu Z; Joshi T; Smith JR; Fritschi FB
    BMC Res Notes; 2019 Aug; 12(1):522. PubMed ID: 31426836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean.
    Bolon YT; Joseph B; Cannon SB; Graham MA; Diers BW; Farmer AD; May GD; Muehlbauer GJ; Specht JE; Tu ZJ; Weeks N; Xu WW; Shoemaker RC; Vance CP
    BMC Plant Biol; 2010 Mar; 10():41. PubMed ID: 20199683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds.
    Li Q; Fan CM; Zhang XM; Fu YF
    Plant Cell Rep; 2012 Oct; 31(10):1789-98. PubMed ID: 22588479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16.
    Zhang Y; Schernthaner J; Labbé N; Hefford MA; Zhao J; Simmonds DH
    Transgenic Res; 2014 Jun; 23(3):455-67. PubMed ID: 24435987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of the soybean seed coat cuticle change during development.
    Ranathunge K; Shao S; Qutob D; Gijzen M; Peterson CA; Bernards MA
    Planta; 2010 Apr; 231(5):1171-88. PubMed ID: 20186427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.
    Redekar NR; Biyashev RM; Jensen RV; Helm RF; Grabau EA; Maroof MA
    BMC Genomics; 2015 Dec; 16():1074. PubMed ID: 26678836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global gene expression profiles in developing soybean seeds.
    Asakura T; Tamura T; Terauchi K; Narikawa T; Yagasaki K; Ishimaru Y; Abe K
    Plant Physiol Biochem; 2012 Mar; 52():147-53. PubMed ID: 22245912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factors and glyoxylate cycle genes prominent in the transition of soybean cotyledons to the first functional leaves of the seedling.
    Shamimuzzaman M; Vodkin L
    Funct Integr Genomics; 2014 Dec; 14(4):683-96. PubMed ID: 25070765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of the acquisition of longevity during seed maturation in soybean.
    Pereira Lima JJ; Buitink J; Lalanne D; Rossi RF; Pelletier S; da Silva EAA; Leprince O
    PLoS One; 2017; 12(7):e0180282. PubMed ID: 28700604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale sequencing of normalized full-length cDNA library of soybean seed at different developmental stages and analysis of the gene expression profiles based on ESTs.
    Sha AH; Li C; Yan XH; Shan ZH; Zhou XA; Jiang ML; Mao H; Chen B; Wan X; Wei WH
    Mol Biol Rep; 2012 Mar; 39(3):2867-74. PubMed ID: 21667246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of genes associated with the increased number of four-seed pods in soybean (Glycine max L.) using transcriptome analysis.
    Liu ZZ; Yao D; Zhang J; Li ZL; Ma J; Liu SY; Qu J; Guan SY; Wang DD; Pan LD; Wang D; Wang PW
    Genet Mol Res; 2015 Dec; 14(4):18895-912. PubMed ID: 26782540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein.
    Huang F; Chi Y; Gai J; Yu D
    Gene; 2009 Jun; 438(1-2):40-8. PubMed ID: 19289160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Spatio-Temporal Transcriptome Profiles of Soybean (
    Sun S; Yi C; Ma J; Wang S; Peirats-Llobet M; Lewsey MG; Whelan J; Shou H
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis.
    Du J; Wang S; He C; Zhou B; Ruan YL; Shou H
    J Exp Bot; 2017 Apr; 68(8):1955-1972. PubMed ID: 28087653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression patterns and subcellular localization of a 52 kDa sucrose-binding protein homologue of Vicia faba (VfSBPL) suggest different functions during development.
    Hei U; Wang Q; Kurz T; Borisjuk L; Golombek S; Neubohn B; Adler K; Gahrtz M; Sauer N; Weber H; Wob U
    Plant Mol Biol; 2001 Nov; 47(4):461-74. PubMed ID: 11669572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.