BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20181503)

  • 1. Developmental niches for embryonic erythroid cells.
    Isern J; Fraser ST; He Z; Baron MH
    Blood Cells Mol Dis; 2010 Apr; 44(4):207-8. PubMed ID: 20181503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fetal liver is a niche for maturation of primitive erythroid cells.
    Isern J; Fraser ST; He Z; Baron MH
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6662-7. PubMed ID: 18445648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythroid development in the mammalian embryo.
    Baron MH; Vacaru A; Nieves J
    Blood Cells Mol Dis; 2013 Dec; 51(4):213-9. PubMed ID: 23932234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression.
    Fraser ST; Isern J; Baron MH
    Blood; 2007 Jan; 109(1):343-52. PubMed ID: 16940424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo.
    McGrath KE; Frame JM; Fromm GJ; Koniski AD; Kingsley PD; Little J; Bulger M; Palis J
    Blood; 2011 Apr; 117(17):4600-8. PubMed ID: 21378272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf.
    Isern J; Fraser ST; He Z; Zhang H; Baron MH
    Blood; 2010 Nov; 116(19):3972-80. PubMed ID: 20720183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice.
    Vacaru AM; Isern J; Fraser ST; Baron MH
    Genesis; 2013 Nov; 51(11):751-62. PubMed ID: 23913596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo.
    Isern J; He Z; Fraser ST; Nowotschin S; Ferrer-Vaquer A; Moore R; Hadjantonakis AK; Schulz V; Tuck D; Gallagher PG; Baron MH
    Blood; 2011 May; 117(18):4924-34. PubMed ID: 21263157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Analysis of Erythroid Progenitors by Colony-Forming Assays.
    Palis J; Koniski A
    Methods Mol Biol; 2018; 1698():117-132. PubMed ID: 29076087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concise Review: early embryonic erythropoiesis: not so primitive after all.
    Baron MH
    Stem Cells; 2013 May; 31(5):849-56. PubMed ID: 23361843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proliferation and cell death of embryonic primitive erythrocytes.
    Kimura T; Sonoda Y; Iwai N; Satoh M; Yamaguchi-Tsukio M; Izui T; Suda M; Sasaki K; Nakano T
    Exp Hematol; 2000 Jun; 28(6):635-41. PubMed ID: 10880749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LYVE1 Marks the Divergence of Yolk Sac Definitive Hemogenic Endothelium from the Primitive Erythroid Lineage.
    Lee LK; Ghorbanian Y; Wang W; Wang Y; Kim YJ; Weissman IL; Inlay MA; Mikkola HKA
    Cell Rep; 2016 Nov; 17(9):2286-2298. PubMed ID: 27880904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexpression of embryonic, fetal, and adult globins in erythroid cells of human embryos: relevance to the cell-lineage models of globin switching.
    Stamatoyannopoulos G; Constantoulakis P; Brice M; Kurachi S; Papayannopoulou T
    Dev Biol; 1987 Sep; 123(1):191-7. PubMed ID: 2442050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro development of primitive and definitive erythrocytes from different precursors.
    Nakano T; Kodama H; Honjo T
    Science; 1996 May; 272(5262):722-4. PubMed ID: 8614833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis.
    Suzuki N; Hirano I; Pan X; Minegishi N; Yamamoto M
    Nat Commun; 2013; 4():2902. PubMed ID: 24309470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny of erythropoiesis in the mammalian embryo.
    McGrath K; Palis J
    Curr Top Dev Biol; 2008; 82():1-22. PubMed ID: 18282515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous developmental control of human embryonic globin gene switching in transgenic mice.
    Raich N; Enver T; Nakamoto B; Josephson B; Papayannopoulou T; Stamatoyannopoulos G
    Science; 1990 Nov; 250(4984):1147-9. PubMed ID: 2251502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The embryonic origins of erythropoiesis in mammals.
    Baron MH; Isern J; Fraser ST
    Blood; 2012 May; 119(21):4828-37. PubMed ID: 22337720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematopoiesis in the yolk sac: more than meets the eye.
    McGrath KE; Palis J
    Exp Hematol; 2005 Sep; 33(9):1021-8. PubMed ID: 16140150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancer dependence of cell-type-specific gene expression increases with developmental age.
    Cai W; Huang J; Zhu Q; Li BE; Seruggia D; Zhou P; Nguyen M; Fujiwara Y; Xie H; Yang Z; Hong D; Ren P; Xu J; Pu WT; Yuan GC; Orkin SH
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21450-21458. PubMed ID: 32817427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.