These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20181730)

  • 1. Multimodal sensory responses of nucleus reticularis gigantocellularis and the responses' relation to cortical and motor activation.
    Martin EM; Pavlides C; Pfaff D
    J Neurophysiol; 2010 May; 103(5):2326-38. PubMed ID: 20181730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses to vertical vestibular stimulation of neurons in the nucleus reticularis gigantocellularis in rabbits.
    Fagerson MH; Barmack NH
    J Neurophysiol; 1995 Jun; 73(6):2378-91. PubMed ID: 7666146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stimulation of the nucleus reticularis gigantocellularis on the membrane potential of cat lumbar motoneurons during sleep and wakefulness.
    Chase MH; Morales FR; Boxer PA; Fung SJ; Soja PJ
    Brain Res; 1986 Oct; 386(1-2):237-44. PubMed ID: 3779411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trigeminal premotor neurons in the bulbar parvocellular reticular formation participating in induction of rhythmical activity of trigeminal motoneurons by repetitive stimulation of the cerebral cortex in the guinea pig.
    Nozaki S; Iriki A; Nakamura Y
    J Neurophysiol; 1993 Feb; 69(2):595-608. PubMed ID: 8459288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of medullary reticulospinal neurons to sinusoidal rotation of neck in the decerebrate cat.
    Srivastava UC; Manzoni D; Pompeiano O; Stampacchia G
    Neuroscience; 1984 Feb; 11(2):473-86. PubMed ID: 6717800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of the projections from the pericruciate cortex to the pontomedullary reticular formation of the cat: a quantitative retrograde tracing study.
    Rho MJ; Cabana T; Drew T
    J Comp Neurol; 1997 Nov; 388(2):228-49. PubMed ID: 9368839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular recordings of subnucleus reticularis dorsalis neurones revealed novel electrophysiological properties and windup mechanisms.
    Soto C; Canedo A
    J Physiol; 2011 Sep; 589(17):4383-401. PubMed ID: 21746779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomic and physiologic evaluation of a link between the nucleus reticularis gigantocellularis and nucleus ambiguous in the rat.
    Chan JY; Chan SH; Ong BT; Barnes CD
    Neurosci Lett; 1986 Jun; 67(1):31-6. PubMed ID: 3725198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discharge patterns of neurons in the medial pontobulbar reticular formation during fictive mastication in the rabbit.
    Westberg KG; Scott G; Olsson KA; Lund JP
    Eur J Neurosci; 2001 Nov; 14(10):1709-18. PubMed ID: 11860465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The medullary reticular formation is a site of muscle relaxant action of diazepam on deep back and neck muscles in the female rat.
    Schwartz-Giblin S; McCarthy MM; Robbins A
    Brain Res; 1996 Feb; 710(1-2):178-88. PubMed ID: 8963657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reticular formation influence on neuronal transmission from perforant pathway through dentate gyrus.
    Winson J
    Brain Res; 1981 Nov; 225(1):37-49. PubMed ID: 6271341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats.
    Takakusaki K; Shimoda N; Matsuyama K; Mori S
    Exp Brain Res; 1994; 99(3):361-74. PubMed ID: 7957716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of neurons in the medial pontomedullary reticular formation during orienting movements in alert head-free cats.
    Isa T; Naito K
    J Neurophysiol; 1995 Jul; 74(1):73-95. PubMed ID: 7472355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal firing in the nucleus accumbens is associated with the level of cortical arousal.
    Callaway CW; Henriksen SJ
    Neuroscience; 1992 Dec; 51(3):547-53. PubMed ID: 1488114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cat spinoreticular neurons: locations, responses and changes in responses during repetitive stimulation.
    Maunz RA; Pitts NG; Peterson BW
    Brain Res; 1978 Jun; 148(2):365-79. PubMed ID: 656939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative analysis of intracellular characteristics of spontaneous neurons in the nucleus reticularis gigantocellularis of the cat.
    Chan JY; Chan SH
    Neurosci Lett; 1983 Jun; 37(2):175-80. PubMed ID: 6308524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins of arousal: roles for medullary reticular neurons.
    Pfaff DW; Martin EM; Faber D
    Trends Neurosci; 2012 Aug; 35(8):468-76. PubMed ID: 22626543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of medullary reticular formation neurons to input from the male genitalia.
    Hubscher CH; Johnson RD
    J Neurophysiol; 1996 Oct; 76(4):2474-82. PubMed ID: 8899620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence and interaction of neck and macular vestibular inputs on reticulospinal neurons.
    Pompeiano O; Manzoni D; Srivastava UC; Stampacchia G
    Neuroscience; 1984 May; 12(1):111-28. PubMed ID: 6611516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of rhythmically active reticular neurons around the trigeminal motor nucleus during fictive mastication in the rat.
    Inoue T; Masuda Y; Nagashima T; Yoshikawa K; Morimoto T
    Neurosci Res; 1992 Sep; 14(4):275-94. PubMed ID: 1334246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.