These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20182012)

  • 1. Highly stable resistive switching on monocrystalline ZnO.
    Shih A; Zhou W; Qiu J; Yang HJ; Chen S; Mi Z; Shih I
    Nanotechnology; 2010 Mar; 21(12):125201. PubMed ID: 20182012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices.
    Yao IC; Lee DY; Tseng TY; Lin P
    Nanotechnology; 2012 Apr; 23(14):145201. PubMed ID: 22433578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.
    Li M; Zhuge F; Zhu X; Yin K; Wang J; Liu Y; He C; Chen B; Li RW
    Nanotechnology; 2010 Oct; 21(42):425202. PubMed ID: 20858929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxidizable electrode material on resistive switching characteristics of ZnO(x)S(1-x) films.
    Cho K; Park S; Chung I; Kim S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8187-90. PubMed ID: 25958497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering electrodeposited ZnO films and their memristive switching performance.
    Zoolfakar AS; Ab Kadir R; Rani RA; Balendhran S; Liu X; Kats E; Bhargava SK; Bhaskaran M; Sriram S; Zhuiykov S; O'Mullane AP; Kalantar-Zadeh K
    Phys Chem Chem Phys; 2013 Jul; 15(25):10376-84. PubMed ID: 23680815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between evolution of resistive switching and oxygen vacancy configuration in La₀.₅Ca₀.₅MnO₃ based memristive devices.
    Wang ZH; Yang Y; Gu L; Habermeier HU; Yu RC; Zhao TY; Sun JR; Shen BG
    Nanotechnology; 2012 Jul; 23(26):265202. PubMed ID: 22700688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.
    Kim KM; Kim GH; Song SJ; Seok JY; Lee MH; Yoon JH; Hwang CS
    Nanotechnology; 2010 Jul; 21(30):305203. PubMed ID: 20610869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonvolatile resistive switching memory properties of thermally annealed titania precursor/polyelectrolyte multilayers.
    Lee C; Kim I; Shin H; Kim S; Cho J
    Langmuir; 2009 Oct; 25(19):11276-81. PubMed ID: 19725555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.
    Lee TJ; Chang CW; Hahm SG; Kim K; Park S; Kim DM; Kim J; Kwon WS; Liou GS; Ree M
    Nanotechnology; 2009 Apr; 20(13):135204. PubMed ID: 19420490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive switching induced by metallic filaments formation through poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate).
    Wang Z; Zeng F; Yang J; Chen C; Pan F
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):447-53. PubMed ID: 22201222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.
    Kim TW; Choi H; Oh SH; Jo M; Wang G; Cho B; Kim DY; Hwang H; Lee T
    Nanotechnology; 2009 Jan; 20(2):025201. PubMed ID: 19417263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Endurance and Resistive Switching Stability in Ceria Thin Films Due to Charge Transfer Ability of Al Dopant.
    Ismail M; Ahmed E; Rana AM; Hussain F; Talib I; Nadeem MY; Panda D; Shah NA
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6127-36. PubMed ID: 26881895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO₂/Pt cell.
    Yoon KJ; Lee MH; Kim GH; Song SJ; Seok JY; Han S; Yoon JH; Kim KM; Hwang CS
    Nanotechnology; 2012 May; 23(18):185202. PubMed ID: 22516621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments.
    Zhuge F; Peng S; He C; Zhu X; Chen X; Liu Y; Li RW
    Nanotechnology; 2011 Jul; 22(27):275204. PubMed ID: 21613680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories.
    Ielmini D; Nardi F; Cagli C
    Nanotechnology; 2011 Jun; 22(25):254022. PubMed ID: 21572207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistive switching in single epitaxial ZnO nanoislands.
    Qi J; Olmedo M; Ren J; Zhan N; Zhao J; Zheng JG; Liu J
    ACS Nano; 2012 Feb; 6(2):1051-8. PubMed ID: 22257020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer.
    Wang SY; Lee DY; Huang TY; Wu JW; Tseng TY
    Nanotechnology; 2010 Dec; 21(49):495201. PubMed ID: 21071817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradual electroforming and memristive switching in Pt/CuO(x)/Si/Pt systems.
    Wei LL; Shang DS; Sun JR; Lee SB; Sun ZG; Shen BG
    Nanotechnology; 2013 Aug; 24(32):325202. PubMed ID: 23867151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.