BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20182066)

  • 1. A review of the factors affecting sunlight inactivation of micro-organisms in waste stabilisation ponds: preliminary results for enterococci.
    Bolton NF; Cromar NJ; Hallsworth P; Fallowfield HJ
    Water Sci Technol; 2010; 61(4):885-90. PubMed ID: 20182066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water.
    Kadir K; Nelson KL
    Water Res; 2014 Mar; 50():307-17. PubMed ID: 24188579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical characteristics of waste stabilization ponds: recommendations for monitoring.
    Davies-Colley RJ; Craggs RJ; Park J; Nagels JW
    Water Sci Technol; 2005; 51(12):153-61. PubMed ID: 16114678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pH on enterococci removal in Pistia-, duckweed- and algae-based stabilization ponds for domestic wastewater treatment.
    Awuah E; Lubberding HJ; Asante K; Gijzen HJ
    Water Sci Technol; 2002; 45(1):67-74. PubMed ID: 11833733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sunlight inactivation of fecal indicator bacteria in open-water unit process treatment wetlands: Modeling endogenous and exogenous inactivation rates.
    Nguyen MT; Jasper JT; Boehm AB; Nelson KL
    Water Res; 2015 Oct; 83():282-92. PubMed ID: 26164800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decay of intestinal enterococci concentrations in high-energy estuarine and coastal waters: towards real-time T90 values for modelling faecal indicators in recreational waters.
    Kay D; Stapleton CM; Wyer MD; McDonald AT; Crowther J; Paul N; Jones K; Francis C; Watkins J; Wilkinson J; Humphrey N; Lin B; Yang L; Falconer RA; Gardner S
    Water Res; 2005 Feb; 39(4):655-67. PubMed ID: 15707639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virus removal in a pilot-scale 'advanced' pond system as indicated by somatic and F-RNA bacteriophages.
    Davies-Colley RJ; Craggs RJ; Park J; Sukias JP; Nagels JW; Stott R
    Water Sci Technol; 2005; 51(12):107-10. PubMed ID: 16114671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.
    Hijnen WA; Beerendonk EF; Medema GJ
    Water Res; 2006 Jan; 40(1):3-22. PubMed ID: 16386286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sludge accumulation, characteristics, and pathogen inactivation in four primary waste stabilization ponds in central Mexico.
    Nelson KL; Cisneros BJ; Tchobanoglous G; Darby JL
    Water Res; 2004 Jan; 38(1):111-27. PubMed ID: 14630109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twenty years' monitoring of Mèze stabilisation ponds: part II--Removal of faecal indicators.
    Brissaud F; Andrianarison T; Brouillet JL; Picot B
    Water Sci Technol; 2005; 51(12):33-41. PubMed ID: 16114661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso).
    Maïga Y; Denyigba K; Wethe J; Ouattara AS
    J Photochem Photobiol B; 2009 Feb; 94(2):113-9. PubMed ID: 19084427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrations and inactivation of Ascaris eggs and pathogen indicator organisms in wastewater stabilization pond sludge.
    Nelson KL
    Water Sci Technol; 2003; 48(2):89-95. PubMed ID: 14510198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal kinetic of Escherichia coli and enterococci in a laboratory pilot scale wastewater maturation pond.
    Ouali A; Jupsin H; Ghrabi A; Vasel JL
    Water Sci Technol; 2014; 69(4):755-9. PubMed ID: 24569273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pH on endogenous sunlight inactivation rates of laboratory strain and wastewater sourced
    Chiyenge M; Silverman AI
    Environ Sci Process Impacts; 2022 Nov; 24(11):2167-2177. PubMed ID: 36226678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of wastewater containing high phenol concentrations using stabilisation ponds enriched with activated sludge.
    Ramos MS; Dávila JL; Esparza F; Thalasso F; Alba J; Guerrero AL; Avelar FJ
    Water Sci Technol; 2005; 51(12):257-60. PubMed ID: 16114692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: effects of additives and alternative container materials.
    Fisher MB; Iriarte M; Nelson KL
    Water Res; 2012 Apr; 46(6):1745-54. PubMed ID: 22257930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of maturation ponds and constructed wetlands as the final stage of an advanced pond system.
    Tanner CC; Craggs RJ; Sukias JP; Park JB
    Water Sci Technol; 2005; 51(12):307-14. PubMed ID: 16114699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part I--water quality issues.
    Cromar NJ; Sweeney DG; O'Brien MJ; Fallowfield HJ
    Water Sci Technol; 2005; 51(12):11-6. PubMed ID: 16114658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar disinfection of fungal spores in water aided by low concentrations of hydrogen peroxide.
    Polo-López MI; García-Fernández I; Oller I; Fernández-Ibáñez P
    Photochem Photobiol Sci; 2011 Mar; 10(3):381-8. PubMed ID: 20859602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameters affecting biological phosphate removal from wastewaters.
    Mulkerrins D; Dobson AD; Colleran E
    Environ Int; 2004 Apr; 30(2):249-59. PubMed ID: 14749113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.