BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20182537)

  • 1. Optical spectroscopy for noninvasive monitoring of stem cell differentiation.
    Downes A; Mouras R; Elfick A
    J Biomed Biotechnol; 2010; 2010():101864. PubMed ID: 20182537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational spectroscopy differentiates between multipotent and pluripotent stem cells.
    Pijanka JK; Kumar D; Dale T; Yousef I; Parkes G; Untereiner V; Yang Y; Dumas P; Collins D; Manfait M; Sockalingum GD; Forsyth NR; Sulé-Suso J
    Analyst; 2010 Dec; 135(12):3126-32. PubMed ID: 20953512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational spectroscopy in stem cell characterisation: is there a niche?
    Sulé-Suso J; Forsyth NR; Untereiner V; Sockalingum GD
    Trends Biotechnol; 2014 May; 32(5):254-62. PubMed ID: 24703620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical imaging with Fourier transform coherent anti-Stokes Raman scattering microscopy.
    Cui M; Skodack J; Ogilvie JP
    Appl Opt; 2008 Nov; 47(31):5790-8. PubMed ID: 19122721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration.
    Moura CC; Tare RS; Oreffo RO; Mahajan S
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27170652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent transfer function of Fourier transform spectral interferometric coherent anti-Stokes Raman scattering microscopy.
    Fukutake N
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1689-94. PubMed ID: 21811331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational Spectroscopy for In Vitro Monitoring Stem Cell Differentiation.
    Ravera F; Efeoglu E; Byrne HJ
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33256146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells.
    Hofemeier AD; Hachmeister H; Pilger C; Schürmann M; Greiner JF; Nolte L; Sudhoff H; Kaltschmidt C; Huser T; Kaltschmidt B
    Sci Rep; 2016 May; 6():26716. PubMed ID: 27225821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing primary mesenchymal stem cells differentiation status by micro-Raman spectroscopy.
    Lazarević JJ; Kukolj T; Bugarski D; Lazarević N; Bugarski B; Popović ZV
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():384-390. PubMed ID: 30726762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free discrimination analysis of de-differentiated vascular smooth muscle cells, mesenchymal stem cells and their vascular and osteogenic progeny using vibrational spectroscopy.
    Molony C; McIntyre J; Maguire A; Hakimjavadi R; Burtenshaw D; Casey G; Di Luca M; Hennelly B; Byrne HJ; Cahill PA
    Biochim Biophys Acta Mol Cell Res; 2018 Feb; 1865(2):343-353. PubMed ID: 29146399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure elucidation of cresylviolet perchlorate in polyvinylbutyral by the joint application of IR, FTIR, Raman, UV and visible spectroscopy.
    Bayrakçeken F; Karaaslan IS; Erol B
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Sep; 68(1):139-42. PubMed ID: 17188561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier transform infrared microspectroscopy reveals unique phenotypes for human embryonic and induced pluripotent stem cell lines and their progeny.
    Cao J; Ng ES; McNaughton D; Stanley EG; Elefanty AG; Tobin MJ; Heraud P
    J Biophotonics; 2014 Oct; 7(10):767-81. PubMed ID: 23616434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoplasmic RNA in undifferentiated neural stem cells: a potential label-free Raman spectral marker for assessing the undifferentiated status.
    Ghita A; Pascut FC; Mather M; Sottile V; Notingher I
    Anal Chem; 2012 Apr; 84(7):3155-62. PubMed ID: 22436054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational spectroscopic methods for cytology and cellular research.
    Clemens G; Hands JR; Dorling KM; Baker MJ
    Analyst; 2014 Sep; 139(18):4411-44. PubMed ID: 25028699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative, label-free characterization of stem cell differentiation at the single-cell level by broadband coherent anti-Stokes Raman scattering microscopy.
    Lee YJ; Vega SL; Patel PJ; Aamer KA; Moghe PV; Cicerone MT
    Tissue Eng Part C Methods; 2014 Jul; 20(7):562-9. PubMed ID: 24224876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy and related techniques in biomedicine.
    Downes A; Elfick A
    Sensors (Basel); 2010; 10(3):1871-89. PubMed ID: 21151763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy.
    Konorov SO; Glover CH; Piret JM; Bryan J; Schulze HG; Blades MW; Turner RF
    Anal Chem; 2007 Sep; 79(18):7221-5. PubMed ID: 17691751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular surface-enhanced Raman scattering probes based on TAT peptide-conjugated Au nanostars for distinguishing the differentiation of lung resident mesenchymal stem cells.
    Shi C; Cao X; Chen X; Sun Z; Xiang Z; Zhao H; Qian W; Han X
    Biomaterials; 2015 Jul; 58():10-25. PubMed ID: 25941778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological, molecular and FTIR spectroscopic analysis during the differentiation of kidney cells from pluripotent stem cells.
    Mata-Miranda MM; Vazquez-Zapien GJ; Rojas-Lopez M; Sanchez-Monroy V; Perez-Ishiwara DG; Delgado-Macuil RJ
    Biol Res; 2017 Apr; 50(1):14. PubMed ID: 28376862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared Spectroscopy and Imaging in Stem Cells and Aging Research.
    Aksoy C; Severcan F
    Methods Mol Biol; 2019; 2045():201-215. PubMed ID: 29464520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.