These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20182537)

  • 21. Infrared Spectroscopy and Imaging in Stem Cells and Aging Research.
    Aksoy C; Severcan F
    Methods Mol Biol; 2019; 2045():201-215. PubMed ID: 29464520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine.
    Evans CL; Xie XS
    Annu Rev Anal Chem (Palo Alto Calif); 2008; 1():883-909. PubMed ID: 20636101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The latest development of the research on Chinese medicine by molecular vibrational spectroscopy].
    Sun S; Zhou Q; Yu J; Hu X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Apr; 20(2):199-202. PubMed ID: 12953487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomolecular vibrational spectroscopy.
    Mathies RA
    Methods Enzymol; 1995; 246():377-89. PubMed ID: 7752932
    [No Abstract]   [Full Text] [Related]  

  • 26. Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-Stokes Raman scattering spectroscopy and microscopy.
    Konorov SO; Blades MW; Turner RF
    Appl Spectrosc; 2010 Jul; 64(7):767-74. PubMed ID: 20615290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrational spectra and normal coordinate analysis of carbamoylazide.
    Mohan S; Durairaj KS; Jose SP
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1697-704. PubMed ID: 12736055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro.
    Notingher I; Bisson I; Bishop AE; Randle WL; Polak JM; Hench LL
    Anal Chem; 2004 Jun; 76(11):3185-93. PubMed ID: 15167800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles.
    Tolstik E; Osminkina LA; Akimov D; Gongalsky MB; Kudryavtsev AA; Timoshenko VY; Heintzmann R; Sivakov V; Popp J
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27626408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman optical activity spectroscopy by visible-excited coherent anti-Stokes Raman scattering.
    Hiramatsu K; Leproux P; Couderc V; Nagata T; Kano H
    Opt Lett; 2015 Sep; 40(17):4170-3. PubMed ID: 26368739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.
    Ramachandran G
    Methods Mol Biol; 2017; 1523():113-128. PubMed ID: 27975247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FTIR and Raman studies of structure and bonding in mineral and organic-mineral composites.
    Tao J
    Methods Enzymol; 2013; 532():533-56. PubMed ID: 24188781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-free analysis of cellular biochemistry by Raman spectroscopy and microscopy.
    Schie IW; Huser T
    Compr Physiol; 2013 Apr; 3(2):941-56. PubMed ID: 23720335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation.
    Salehi H; Collart-Dutilleul PY; Gergely C; Cuisinier FJ
    J Biomed Opt; 2015 Jul; 20(7):076013. PubMed ID: 26216272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells.
    McManus LL; Burke GA; McCafferty MM; O'Hare P; Modreanu M; Boyd AR; Meenan BJ
    Analyst; 2011 Jun; 136(12):2471-81. PubMed ID: 21541414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raman microscopy-based cytochemical investigations of potential niche-forming inhomogeneities present in human embryonic stem cell colonies.
    Konorov SO; Schulze HG; Piret JM; Aparicio SA; Turner RF; Blades MW
    Appl Spectrosc; 2011 Sep; 65(9):1009-16. PubMed ID: 21929855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Raman imaging diagnosis of the early stage differentiation of mouse embryonic stem cell (mESC).
    Dou X; Zhao Y; Li M; Chen Q; Yamaguchi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117438. PubMed ID: 31377684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Watching dance of the molecules - CARS microscopy].
    Korczyński J; Kubiak K; Węgłowska E
    Postepy Biochem; 2017; 63(1):44-52. PubMed ID: 28409574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical analysis and quantification of hematopoietic stem cells by infrared spectroscopy.
    Zelig U; Dror Z; Iskovich S; Zwielly A; Ben-Harush M; Nathan I; Mordechai S; Kapelushnik J
    J Biomed Opt; 2010; 15(3):037008. PubMed ID: 20615037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring cellular responses upon fatty acid exposure by Fourier transform infrared spectroscopy and Raman spectroscopy.
    Najbjerg H; Afseth NK; Young JF; Bertram HC; Pedersen ME; Grimmer S; Vogt G; Kohler A
    Analyst; 2011 Apr; 136(8):1649-58. PubMed ID: 21347493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.