These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 20182557)
1. Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach. Chiou SH; Huang CH; Lee IL; Wang YT; Liu NY; Tsay YG; Chen YJ Mol Vis; 2010 Feb; 16():294-302. PubMed ID: 20182557 [TBL] [Abstract][Full Text] [Related]
2. Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses. Huang CH; Wang YT; Tsai CF; Chen YJ; Lee JS; Chiou SH Mol Vis; 2011 Jan; 17():186-98. PubMed ID: 21264232 [TBL] [Abstract][Full Text] [Related]
3. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish. Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH Mol Vis; 2013; 19():623-37. PubMed ID: 23559856 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
5. Patterns of crystallin distribution in porcine eye lenses. Keenan J; Orr DF; Pierscionek BK Mol Vis; 2008 Jul; 14():1245-53. PubMed ID: 18615203 [TBL] [Abstract][Full Text] [Related]
6. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Ueda Y; Duncan MK; David LL Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):205-15. PubMed ID: 11773033 [TBL] [Abstract][Full Text] [Related]
7. In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin. Andley UP; Malone JP; Townsend RR PLoS One; 2014; 9(4):e95507. PubMed ID: 24760011 [TBL] [Abstract][Full Text] [Related]
8. Lens proteome map and alpha-crystallin profile of the catfish Rita rita. Mohanty BP; Bhattacharjee S; Das MK Indian J Biochem Biophys; 2011 Feb; 48(1):35-41. PubMed ID: 21469600 [TBL] [Abstract][Full Text] [Related]
9. The l-isoaspartate modification within protein fragments in the aging lens can promote protein aggregation. Warmack RA; Shawa H; Liu K; Lopez K; Loo JA; Horwitz J; Clarke SG J Biol Chem; 2019 Aug; 294(32):12203-12219. PubMed ID: 31239355 [TBL] [Abstract][Full Text] [Related]
10. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts. Li W; Calvin HI; David LL; Wu K; McCormack AL; Zhu GP; Fu SC Exp Eye Res; 2002 Sep; 75(3):335-46. PubMed ID: 12384096 [TBL] [Abstract][Full Text] [Related]
11. Succinylation Is a Gain-of-Function Modification in Human Lens αB-Crystallin. Nandi SK; Rakete S; Nahomi RB; Michel C; Dunbar A; Fritz KS; Nagaraj RH Biochemistry; 2019 Mar; 58(9):1260-1274. PubMed ID: 30758948 [TBL] [Abstract][Full Text] [Related]
12. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei. Su S; Liu P; Zhang H; Li Z; Song Z; Zhang L; Chen S Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4182-91. PubMed ID: 21436267 [TBL] [Abstract][Full Text] [Related]
13. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression. Posner M; Hawke M; Lacava C; Prince CJ; Bellanco NR; Corbin RW Mol Vis; 2008 Apr; 14():806-14. PubMed ID: 18449354 [TBL] [Abstract][Full Text] [Related]
14. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone. Wang L; Zhao WC; Yin XL; Ge JY; Bu ZG; Ge HY; Meng QF; Liu P Mol Biosyst; 2012 Mar; 8(3):888-901. PubMed ID: 22269969 [TBL] [Abstract][Full Text] [Related]
15. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function. Takata T; Nakamura-Hirota T; Inoue R; Morishima K; Sato N; Sugiyama M; Fujii N FEBS J; 2018 Jun; 285(12):2263-2277. PubMed ID: 29676852 [TBL] [Abstract][Full Text] [Related]
16. Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens. Yanshole LV; Cherepanov IV; Snytnikova OA; Yanshole VV; Sagdeev RZ; Tsentalovich YP Mol Vis; 2013; 19():2196-208. PubMed ID: 24227915 [TBL] [Abstract][Full Text] [Related]
17. Comparative proteomic analysis identifies age-dependent increases in the abundance of specific proteins after deletion of the small heat shock proteins αA- and αB-crystallin. Andley UP; Malone JP; Hamilton PD; Ravi N; Townsend RR Biochemistry; 2013 Apr; 52(17):2933-48. PubMed ID: 23590631 [TBL] [Abstract][Full Text] [Related]
18. alpha-Crystallin localizes to the leading edges of migrating lens epithelial cells. Maddala R; Rao VP Exp Cell Res; 2005 May; 306(1):203-15. PubMed ID: 15878345 [TBL] [Abstract][Full Text] [Related]
19. Study of posttranslational modifications in lenticular alphaA-Crystallin of mice using proteomic analysis techniques. Schaefer H; Chamrad DC; Herrmann M; Stuwe J; Becker G; Klose J; Blueggel M; Meyer HE; Marcus K Biochim Biophys Acta; 2006 Dec; 1764(12):1948-62. PubMed ID: 17157567 [TBL] [Abstract][Full Text] [Related]
20. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses. Srivastava OP; Srivastava K Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]