BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 20182929)

  • 1. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds.
    Weckbecker A; Gröger H; Hummel W
    Adv Biochem Eng Biotechnol; 2010; 120():195-242. PubMed ID: 20182929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems.
    Hummel W; Gröger H
    J Biotechnol; 2014 Dec; 191():22-31. PubMed ID: 25102236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cofactor regeneration for sustainable enzymatic biosynthesis.
    Liu W; Wang P
    Biotechnol Adv; 2007; 25(4):369-84. PubMed ID: 17459647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors.
    Jia Q; Zheng YC; Li HP; Qian XL; Zhang ZJ; Xu JH
    Appl Environ Microbiol; 2022 May; 88(9):e0034122. PubMed ID: 35442081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase.
    Weckbecker A; Hummel W
    Biotechnol Lett; 2004 Nov; 26(22):1739-44. PubMed ID: 15604828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 7. Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins.
    Hölsch K; Weuster-Botz D
    Biotechnol Appl Biochem; 2010 Aug; 56(4):131-40. PubMed ID: 20590527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect electrochemical reduction of nicotinamide coenzymes.
    Vuorilehto K; Lütz S; Wandrey C
    Bioelectrochemistry; 2004 Dec; 65(1):1-7. PubMed ID: 15522685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent trends and novel concepts in cofactor-dependent biotransformations.
    Kara S; Schrittwieser JH; Hollmann F; Ansorge-Schumacher MB
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1517-29. PubMed ID: 24362856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards catalyst compartimentation in combined chemo- and biocatalytic processes: immobilization of alcohol dehydrogenases for the diastereoselective reduction of a β-hydroxy ketone obtained from an organocatalytic aldol reaction.
    Rulli G; Heidlindemann M; Berkessel A; Hummel W; Gröger H
    J Biotechnol; 2013 Nov; 168(3):271-6. PubMed ID: 24036136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration.
    Wang L; Zhang H; Ching CB; Chen Y; Jiang R
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1233-41. PubMed ID: 22116631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in pyridine nucleotide regeneration.
    van der Donk WA; Zhao H
    Curr Opin Biotechnol; 2003 Aug; 14(4):421-6. PubMed ID: 12943852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Content of nicotinamide coenzymes in rat liver under conditions of nicotinamide administration].
    Mogilevich SE; Velikiĭ MM; Parkhomets' PK
    Ukr Biokhim Zh; 1977; 49(6):39-43. PubMed ID: 22148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics for biotransformations: Intracellular redox cofactor analysis and enzyme kinetics offer insight into whole cell processes.
    Schroer K; Zelic B; Oldiges M; Lütz S
    Biotechnol Bioeng; 2009 Oct; 104(2):251-60. PubMed ID: 19489025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced oxidation of NAD(P)H by oxidants in the presence of dehydrogenases but no evidence for a superoxide-propagated chain oxidation of the bound coenzymes.
    Petrat F; Bramey T; Kirsch M; Kerkweg U; De Groot H
    Free Radic Res; 2006 Aug; 40(8):857-63. PubMed ID: 17015264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Versatile Chemoenzymatic Nanoreactor that Mimics NAD(P)H Oxidase for the In Situ Regeneration of Cofactors.
    Rodriguez-Abetxuko A; Reifs A; Sánchez-deAlcázar D; Beloqui A
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202206926. PubMed ID: 35762738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration.
    Bozic M; Pricelius S; Guebitz GM; Kokol V
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):563-71. PubMed ID: 19662398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.