These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 20182929)

  • 21. Structure-Guided Design of Formate Dehydrogenase for Regeneration of a Non-Natural Redox Cofactor.
    Guo X; Wang X; Liu Y; Li Q; Wang J; Liu W; Zhao ZK
    Chemistry; 2020 Dec; 26(70):16611-16615. PubMed ID: 32815230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability.
    Hoelsch K; Sührer I; Heusel M; Weuster-Botz D
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2473-81. PubMed ID: 22588502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase.
    Ernst M; Kaup B; Müller M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):629-34. PubMed ID: 15549291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light.
    Emmanuel MA; Greenberg NR; Oblinsky DG; Hyster TK
    Nature; 2016 Dec; 540(7633):414-417. PubMed ID: 27974767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic redox cofactor regeneration in organic media: functionalization and application of glycerol dehydrogenase and soluble transhydrogenase in reverse micelles.
    Ichinose H; Kamiya N; Goto M
    Biotechnol Prog; 2005; 21(4):1192-7. PubMed ID: 16080701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron oxide/carbon black (Fe2O3/CB) composite electrode for the detection of reduced nicotinamide cofactors using an amperometric method under a low overpotential.
    Kim YH; Kim T; Ryu JH; Yoo YJ
    Biosens Bioelectron; 2010 Jan; 25(5):1160-5. PubMed ID: 19914817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD⁺ and NADP⁺.
    Wu X; Kobori H; Orita I; Zhang C; Imanaka T; Xing XH; Fukui T
    Biotechnol Bioeng; 2012 Jan; 109(1):53-62. PubMed ID: 21830202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laminar flow-based electrochemical microreactor for efficient regeneration of nicotinamide cofactors for biocatalysis.
    Yoon SK; Choban ER; Kane C; Tzedakis T; Kenis PJ
    J Am Chem Soc; 2005 Aug; 127(30):10466-7. PubMed ID: 16045315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient regeneration of NADPH using an engineered phosphite dehydrogenase.
    Johannes TW; Woodyer RD; Zhao H
    Biotechnol Bioeng; 2007 Jan; 96(1):18-26. PubMed ID: 16948172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Biomimetic Cofactors According to Stability, Redox Potentials, and Enzymatic Conversion by NADH Oxidase from Lactobacillus pentosus.
    Nowak C; Pick A; Csepei LI; Sieber V
    Chembiochem; 2017 Oct; 18(19):1944-1949. PubMed ID: 28752634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cofactor diversity in biological oxidations: implications and applications.
    Duine JA
    Chem Rec; 2001; 1(1):74-83. PubMed ID: 11893060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and Biochemical Evaluation of Nicotinamide Derivatives as NADH Analogue Coenzymes in Ene Reductase.
    Falcone N; She Z; Syed J; Lough A; Kraatz HB
    Chembiochem; 2019 Mar; 20(6):838-845. PubMed ID: 30500101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renewable dehydrogenase-based interfaces for bioelectronic applications.
    Hassler BL; Kohli N; Zeikus JG; Lee I; Worden RM
    Langmuir; 2007 Jun; 23(13):7127-33. PubMed ID: 17503864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein engineering applications of industrially exploitable enzymes: Geobacillus stearothermophilus LDH and Candida methylica FDH.
    Karagüler NG; Sessions RB; Binay B; Ordu EB; Clarke AR
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1610-5. PubMed ID: 18031276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coenzymic activity of NADP derivatives alkylated at 2'-phosphate and 6-amino groups.
    Okuda K; Urabe I; Okada H
    Eur J Biochem; 1985 Mar; 147(2):249-53. PubMed ID: 3971981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design.
    Woodyer R; van der Donk WA; Zhao H
    Biochemistry; 2003 Oct; 42(40):11604-14. PubMed ID: 14529270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.