BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 20183057)

  • 1. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles.
    Bezbaruah AN; Thompson JM; Chisholm BJ
    J Environ Sci Health B; 2009 Aug; 44(6):518-24. PubMed ID: 20183057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of atrazine by nanoscale zero valent iron supported on organobentonite.
    Zhang Y; Li Y; Zheng X
    Sci Total Environ; 2011 Jan; 409(3):625-30. PubMed ID: 21093019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of nitrate by resin-supported nanoscale zero-valent iron.
    Park H; Park YM; Yoo KM; Lee SH
    Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
    Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A
    J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications.
    Bezbaruah AN; Krajangpan S; Chisholm BJ; Khan E; Bermudez JJ
    J Hazard Mater; 2009 Jul; 166(2-3):1339-43. PubMed ID: 19178997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching.
    Klimkova S; Cernik M; Lacinova L; Filip J; Jancik D; Zboril R
    Chemosphere; 2011 Feb; 82(8):1178-84. PubMed ID: 21193219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process optimization in use of zero valent iron nanoparticles for oxidative transformations.
    Mylon SE; Sun Q; Waite TD
    Chemosphere; 2010 Sep; 81(1):127-31. PubMed ID: 20619873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of pH buffer capacity of sediment on dechlorination of atrazine using zero valent iron.
    Kim G; Jeong W; Choe S
    J Environ Sci Health B; 2007; 42(3):287-95. PubMed ID: 17454382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid treatment of atrazine-contaminated water by nickel/iron bimetallic system.
    Wei H; Tong SP; Wang HY; Liu WP
    J Environ Sci (China); 2004; 16(6):925-7. PubMed ID: 15900721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron.
    Dror I; Jacov OM; Cortis A; Berkowitz B
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3416-23. PubMed ID: 22680618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics.
    Hwang YH; Kim DG; Ahn YT; Moon CM; Shin HS
    Water Sci Technol; 2010; 61(3):705-12. PubMed ID: 20150707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate.
    Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E
    Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of atrazine and alachlor in redox-treated ferruginous smectite.
    Xu JC; Stucki JW; Wu J; Kostka JE; Sims GK
    Environ Toxicol Chem; 2001 Dec; 20(12):2717-24. PubMed ID: 11764154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of alachlor from water by catalyzed ozonation in the presence of Fe2+, Mn2+, and humic substances.
    Li HY; Qu JH; Zhao X; Liu HJ
    J Environ Sci Health B; 2004; 39(5-6):791-803. PubMed ID: 15620087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous determination of alachlor and atrazine in aqueous samples.
    Pirsaheb M; Fattahi N; Shamsipur M; Khodadadi T
    J Sep Sci; 2013 Feb; 36(4):684-9. PubMed ID: 23341303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II).
    Choi K; Lee W
    J Hazard Mater; 2012 Apr; 211-212():146-53. PubMed ID: 22079185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive dechlorination of atrazine catalyzed by metalloporphyrins.
    Nelkenbaum E; Dror I; Berkowitz B
    Chemosphere; 2009 Mar; 75(1):48-55. PubMed ID: 19150728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.