These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 20183057)
1. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. Bezbaruah AN; Thompson JM; Chisholm BJ J Environ Sci Health B; 2009 Aug; 44(6):518-24. PubMed ID: 20183057 [TBL] [Abstract][Full Text] [Related]
2. Removal of atrazine by nanoscale zero valent iron supported on organobentonite. Zhang Y; Li Y; Zheng X Sci Total Environ; 2011 Jan; 409(3):625-30. PubMed ID: 21093019 [TBL] [Abstract][Full Text] [Related]
3. Reduction of nitrate by resin-supported nanoscale zero-valent iron. Park H; Park YM; Yoo KM; Lee SH Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454 [TBL] [Abstract][Full Text] [Related]
4. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. Kim H; Hong HJ; Jung J; Kim SH; Yang JW J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289 [TBL] [Abstract][Full Text] [Related]
5. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426 [TBL] [Abstract][Full Text] [Related]
6. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Zhang M; He F; Zhao D; Hao X Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362 [TBL] [Abstract][Full Text] [Related]
7. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Bezbaruah AN; Krajangpan S; Chisholm BJ; Khan E; Bermudez JJ J Hazard Mater; 2009 Jul; 166(2-3):1339-43. PubMed ID: 19178997 [TBL] [Abstract][Full Text] [Related]
8. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Klimkova S; Cernik M; Lacinova L; Filip J; Jancik D; Zboril R Chemosphere; 2011 Feb; 82(8):1178-84. PubMed ID: 21193219 [TBL] [Abstract][Full Text] [Related]
9. Process optimization in use of zero valent iron nanoparticles for oxidative transformations. Mylon SE; Sun Q; Waite TD Chemosphere; 2010 Sep; 81(1):127-31. PubMed ID: 20619873 [TBL] [Abstract][Full Text] [Related]
10. Impact of pH buffer capacity of sediment on dechlorination of atrazine using zero valent iron. Kim G; Jeong W; Choe S J Environ Sci Health B; 2007; 42(3):287-95. PubMed ID: 17454382 [TBL] [Abstract][Full Text] [Related]
11. Rapid treatment of atrazine-contaminated water by nickel/iron bimetallic system. Wei H; Tong SP; Wang HY; Liu WP J Environ Sci (China); 2004; 16(6):925-7. PubMed ID: 15900721 [TBL] [Abstract][Full Text] [Related]
12. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron. Dror I; Jacov OM; Cortis A; Berkowitz B ACS Appl Mater Interfaces; 2012 Jul; 4(7):3416-23. PubMed ID: 22680618 [TBL] [Abstract][Full Text] [Related]
13. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Bennett P; He F; Zhao D; Aiken B; Feldman L J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350 [TBL] [Abstract][Full Text] [Related]
14. Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics. Hwang YH; Kim DG; Ahn YT; Moon CM; Shin HS Water Sci Technol; 2010; 61(3):705-12. PubMed ID: 20150707 [TBL] [Abstract][Full Text] [Related]
15. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate. Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199 [TBL] [Abstract][Full Text] [Related]
16. Fate of atrazine and alachlor in redox-treated ferruginous smectite. Xu JC; Stucki JW; Wu J; Kostka JE; Sims GK Environ Toxicol Chem; 2001 Dec; 20(12):2717-24. PubMed ID: 11764154 [TBL] [Abstract][Full Text] [Related]
17. Removal of alachlor from water by catalyzed ozonation in the presence of Fe2+, Mn2+, and humic substances. Li HY; Qu JH; Zhao X; Liu HJ J Environ Sci Health B; 2004; 39(5-6):791-803. PubMed ID: 15620087 [TBL] [Abstract][Full Text] [Related]
18. Application of dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous determination of alachlor and atrazine in aqueous samples. Pirsaheb M; Fattahi N; Shamsipur M; Khodadadi T J Sep Sci; 2013 Feb; 36(4):684-9. PubMed ID: 23341303 [TBL] [Abstract][Full Text] [Related]
19. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II). Choi K; Lee W J Hazard Mater; 2012 Apr; 211-212():146-53. PubMed ID: 22079185 [TBL] [Abstract][Full Text] [Related]
20. Reductive dechlorination of atrazine catalyzed by metalloporphyrins. Nelkenbaum E; Dror I; Berkowitz B Chemosphere; 2009 Mar; 75(1):48-55. PubMed ID: 19150728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]