These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 20183057)

  • 21. Use of iron-based technologies in contaminated land and groundwater remediation: a review.
    Cundy AB; Hopkinson L; Whitby RL
    Sci Total Environ; 2008 Aug; 400(1-3):42-51. PubMed ID: 18692221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane.
    Wei YT; Wu SC; Yang SW; Che CH; Lien HL; Huang DH
    J Hazard Mater; 2012 Apr; 211-212():373-80. PubMed ID: 22118849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles.
    Shih YH; Tai YT
    Chemosphere; 2010 Mar; 78(10):1200-6. PubMed ID: 20117822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.
    Shi LN; Zhang X; Chen ZL
    Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Test of the Root Zone Water Quality Model (RZWQM) for predicting runoff of atrazine, alachlor and fenamiphos species from conventional-tillage corn mesoplots.
    Ma Q; Wauchope RD; Ma L; Rojas KW; Malone RW; Ahuja LR
    Pest Manag Sci; 2004 Mar; 60(3):267-76. PubMed ID: 15025238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism.
    Zhang X; Lin S; Chen Z; Megharaj M; Naidu R
    Water Res; 2011 May; 45(11):3481-8. PubMed ID: 21529878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes.
    Elliott DW; Lien HL; Zhang WX
    J Environ Qual; 2008; 37(6):2192-201. PubMed ID: 18948472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride.
    Huang CC; Lo SL; Tsai SM; Lien HL
    J Environ Monit; 2011 Sep; 13(9):2406-12. PubMed ID: 21850296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of thiobencarb in aqueous solution by zero valent iron.
    Nurul Amin M; Kaneco S; Kato T; Katsumata H; Suzuki T; Ohta K
    Chemosphere; 2008 Jan; 70(3):511-5. PubMed ID: 17963816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.
    Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P
    Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the reaction kinetics of Fenton's process on the removal of atrazine.
    Chan KH; Chu W
    Chemosphere; 2003 Apr; 51(4):305-11. PubMed ID: 12604082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical reduction of nitrate by nanosized iron: kinetics and pathways.
    Yang GC; Lee HL
    Water Res; 2005 Mar; 39(5):884-94. PubMed ID: 15743635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium.
    Castro CS; Guerreiro MC; Gonçalves M; Oliveira LC; Anastácio AS
    J Hazard Mater; 2009 May; 164(2-3):609-14. PubMed ID: 18838216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupling Fenton and biological oxidation for the removal of nitrochlorinated herbicides from water.
    Sanchis S; Polo AM; Tobajas M; Rodriguez JJ; Mohedano AF
    Water Res; 2014 Feb; 49():197-206. PubMed ID: 24333521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of carbon tetrachloride in the presence of zero-valent iron.
    Alvarado JS; Rose C; Lafreniere L
    J Environ Monit; 2010 Aug; 12(8):1524-30. PubMed ID: 20596593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.
    Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV
    Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of trinitroglycerin (TNG) using zero-valent iron nanoparticles/nanosilica SBA-15 composite (ZVINs/SBA-15).
    Saad R; Thiboutot S; Ampleman G; Dashan W; Hawari J
    Chemosphere; 2010 Nov; 81(7):853-8. PubMed ID: 20801482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions.
    Cho Y; Choi SI
    Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles.
    Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.