BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20183059)

  • 41. Kinetic Study of the Biodegradation of Acephate by Indigenous Soil Bacterial Isolates in the Presence of Humic Acid and Metal Ions.
    Singh S; Kumar V; Singla S; Sharma M; Singh DP; Prasad R; Thakur VK; Singh J
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32168777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bentonite and anthracite in alginate-based controlled release formulations to reduce leaching of chloridazon and metribuzin in a calcareous soil.
    Flores Céspedes F; Pérez García S; Villafranca Sánchez M; Fernández Pérez M
    Chemosphere; 2013 Aug; 92(8):918-24. PubMed ID: 23562547
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils.
    Rodríguez-Cruz MS; Sánchez-Martín MJ; Andrades MS; Sánchez-Camazano M
    J Hazard Mater; 2007 Jan; 139(2):363-72. PubMed ID: 16879917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of the insecticide acephate on the growth and nutrient uptake of an aquatic bacterium.
    Williams GL; Albright LJ
    Can J Microbiol; 1984 Mar; 30(3):375-80. PubMed ID: 6722663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: a biologically safe alternative to neurotoxic pesticides.
    Pradhan S; Roy I; Lodh G; Patra P; Choudhury SR; Samanta A; Goswami A
    J Environ Sci Health B; 2013; 48(7):559-69. PubMed ID: 23581688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coating of maize seeds with acephate for precision agriculture: Safety assessment in earthworms, bees, and soil microorganisms.
    Yan W; Zheng Q; Zhu S; Miao X; Yang L; Wu J; Wang B; Zhang Z; Xu H
    Sci Total Environ; 2024 Sep; 943():173761. PubMed ID: 38851355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of formulations to improve the controlled-release of linalool to be applied as an insecticide.
    Lopez MD; Maudhuit A; Pascual-Villalobos MJ; Poncelet D
    J Agric Food Chem; 2012 Feb; 60(5):1187-92. PubMed ID: 22250856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Release-controlled microcapsules of thiamethoxam encapsulated in beeswax and their application in field.
    Huang Y; Hu Q; Cui G; Guo X; Wei B; Gan C; Li W; Mo D; Lu R; Cui J
    J Environ Sci Health B; 2020; 55(4):342-354. PubMed ID: 31790325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physicochemical, molecular-orbital and electronic properties of acephate and methamidophos.
    Singh AK; White T; Spassova D; Jiang Y
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1998 Jan; 119(1):107-17. PubMed ID: 9568380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biological monitoring of human exposure to acephate.
    Maroni M; Catenacci G; Galli D; Cavallo D; Ravazzani G
    Arch Environ Contam Toxicol; 1990; 19(5):782-8. PubMed ID: 2241237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of soil characteristics on metribuzin dissipation using clay-gel-based formulations.
    Maqueda C; Villaverde J; Sopeña F; Undabeytia T; Morillo E
    J Agric Food Chem; 2009 Apr; 57(8):3273-8. PubMed ID: 19368354
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of soil moisture on the release of alachlor from alginate-based controlled-release formulations.
    Nasser A; Mingelgrin U; Gerstl Z
    J Agric Food Chem; 2008 Feb; 56(4):1322-7. PubMed ID: 18193836
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lignin-based formulations to prevent pesticides pollution.
    Garrido-Herrera FJ; Daza-Fernández I; González-Pradas E; Fernández-Pérez M
    J Hazard Mater; 2009 Aug; 168(1):220-5. PubMed ID: 19272698
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites.
    Sarkar DJ; Singh A
    Carbohydr Polym; 2017 Jan; 156():303-311. PubMed ID: 27842827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of different organic wastes in reducing the potential leaching of propanil, isoxaben, cadusafos and pencycuron through the soil.
    Fenoll J; Garrido I; Hellín P; Flores P; Vela N; Navarro S
    J Environ Sci Health B; 2014; 49(8):601-8. PubMed ID: 24901963
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dissipation of insecticides in a Mediterranean soil in the presence of wastewater and surfactant solutions. A kinetic model approach.
    Hernández-Soriano MC; Mingorance MD; Peña A
    Water Res; 2009 May; 43(9):2481-92. PubMed ID: 19349059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acephate and methamidophos residue behavior in Florida citrus, 1976.
    Nigg HN; Reinert JA; Fitzpatrick GE
    Pestic Monit J; 1979 Mar; 12(4):167-71. PubMed ID: 461112
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Residues and half-lives of acephate, methamidophos, and pirimiphos-methyl in leaves and fruit of greenhouse-grown tomatoes.
    Antonious GF; Snyder JC
    Bull Environ Contam Toxicol; 1994 Jan; 52(1):141-8. PubMed ID: 8130409
    [No Abstract]   [Full Text] [Related]  

  • 59. Ethylcellulose formulations for controlled release of the herbicide alachlor in a sandy soil.
    Sopeña F; Cabrera A; Maqueda C; Morillo E
    J Agric Food Chem; 2007 Oct; 55(20):8200-5. PubMed ID: 17803265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a Chlorantraniliprole Microcapsule Formulation with a High Loading Content and Controlled-Release Property.
    Liu B; Wang Y; Yang F; Cui H; Wu D
    J Agric Food Chem; 2018 Jul; 66(26):6561-6568. PubMed ID: 28489403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.