These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20183133)

  • 1. The use of physicochemical methods to detect organic food soils on stainless steel surfaces.
    Whitehead KA; Benson P; Smith LA; Verran J
    Biofouling; 2009 Nov; 25(8):749-56. PubMed ID: 20183133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The detection and influence of food soils on microorganisms on stainless steel using scanning electron microscopy and epifluorescence microscopy.
    Whitehead KA; Smith LA; Verran J
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S125-33. PubMed ID: 20153071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physico-chemical and hygienic property modifications of stainless steel surfaces induced by conditioning with food and detergent.
    Jullien C; Benezech T; Gentil CL; Boulange-Petermann L; Dubois PE; Tissier JP; Traisnel M; Faille C
    Biofouling; 2008; 24(3):163-72. PubMed ID: 18348006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The detection of food soils and cells on stainless steel using industrial methods: UV illumination and ATP bioluminescence.
    Whitehead KA; Smith LA; Verran J
    Int J Food Microbiol; 2008 Sep; 127(1-2):121-8. PubMed ID: 18678428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential fluorescent staining of Listeria monocytogenes and a whey food soil for quantitative analysis of surface hygiene.
    Whitehead KA; Benson P; Verran J
    Int J Food Microbiol; 2009 Sep; 135(1):75-80. PubMed ID: 19654071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The detection of food soils on stainless steel using energy dispersive X-ray and Fourier transform infrared spectroscopy.
    Whitehead KA; Benson PS; Verran J
    Biofouling; 2011 Sep; 27(8):907-17. PubMed ID: 21882897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: influence of yeast and solid surface properties.
    Guillemot G; Vaca-Medina G; Martin-Yken H; Vernhet A; Schmitz P; Mercier-Bonin M
    Colloids Surf B Biointerfaces; 2006 May; 49(2):126-35. PubMed ID: 16621474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicomponent cleaning verification of stainless steel surfaces for the removal of dairy residues using infrared microspectroscopy.
    Lang MP; Kocaoglu-Vurma NA; Harper WJ; Rodriguez-Saona LE
    J Food Sci; 2011 Mar; 76(2):C303-8. PubMed ID: 21535750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium-coating of stainless steel as an aid to improved cleanability.
    Verran J; Packer A; Kelly P; Whitehead KA
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S134-9. PubMed ID: 20542585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatitis A virus attachment to agri-food surfaces using immunological, virological and thermodynamic assays.
    Kukavica-Ibrulj I; Darveau A; Jean J; Fliss I
    J Appl Microbiol; 2004; 97(5):923-34. PubMed ID: 15479407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attachment behaviour of Escherichia coli K12 and Salmonella Typhimurium P6 on food contact surfaces for food transportation.
    Abban S; Jakobsen M; Jespersen L
    Food Microbiol; 2012 Sep; 31(2):139-47. PubMed ID: 22608216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced oxidation technology with photohydroionization as a surface treatment for controlling Listeria monocytogenes on stainless steel surfaces and ready-to-eat cheese and turkey.
    Saini JK; Marsden JL; Getty KJ; Fung DY
    Foodborne Pathog Dis; 2014 Apr; 11(4):295-300. PubMed ID: 24444302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion of Staphylococcus aureus and Staphylococcus epidermidis to the Episkin reconstructed epidermis model and to an inert 304 stainless steel substrate.
    Lerebour G; Cupferman S; Bellon-Fontaine MN
    J Appl Microbiol; 2004; 97(1):7-16. PubMed ID: 15186437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.
    Schlisselberg DB; Yaron S
    Food Microbiol; 2013 Aug; 35(1):65-72. PubMed ID: 23628616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm retention on surfaces with variable roughness and hydrophobicity.
    Tang L; Pillai S; Revsbech NP; Schramm A; Bischoff C; Meyer RL
    Biofouling; 2011 Jan; 27(1):111-21. PubMed ID: 21181571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant.
    Chia TW; Goulter RM; McMeekin T; Dykes GA; Fegan N
    Food Microbiol; 2009 Dec; 26(8):853-9. PubMed ID: 19835771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity.
    Di Bonaventura G; Piccolomini R; Paludi D; D'Orio V; Vergara A; Conter M; Ianieri A
    J Appl Microbiol; 2008 Jun; 104(6):1552-61. PubMed ID: 18194252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The resistance to detachment of dairy strains of Listeria monocytogenes from stainless steel by shear stress is related to the fluid dynamic characteristics of the location of isolation.
    Perni S; Aldsworth TG; Jordan SJ; Fernandes I; Barbosa M; Sol M; Tenreiro RP; Chambel L; Zilhão I; Barata B; Adrião A; Leonor Faleiro M; Andrew PW; Shama G
    Int J Food Microbiol; 2007 May; 116(3):384-90. PubMed ID: 17433481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of hydrophobicity in adhesion of wild yeast isolated from the ultrafiltration membranes of an apple juice processing plant.
    Tarifa MC; Brugnoni LI; Lozano JE
    Biofouling; 2013; 29(7):841-53. PubMed ID: 23837866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of anti-Listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces.
    Pérez Ibarreche M; Castellano P; Vignolo G
    Meat Sci; 2014 Jan; 96(1):295-303. PubMed ID: 23933630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.