BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20183924)

  • 1. Determination of subcellular concentrations of soluble carbohydrates in rose petals during opening by nonaqueous fractionation method combined with infiltration-centrifugation method.
    Yamada K; Norikoshi R; Suzuki K; Imanishi H; Ichimura K
    Planta; 2009 Nov; 230(6):1115-27. PubMed ID: 20183924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of mannitol in the cytoplasm and vacuole during the expansion of sepal cells associated with flower opening in Delphinium × belladonna cv. Bellamosum.
    Norikoshi R; Yamada K; Niki T; Ichimura K
    Planta; 2015 Dec; 242(6):1467-77. PubMed ID: 26316074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida).
    Cheng C; Yu Q; Wang Y; Wang H; Dong Y; Ji Y; Zhou X; Li Y; Jiang CZ; Gan SS; Zhao L; Fei Z; Gao J; Ma N
    Plant Cell; 2021 May; 33(4):1229-1251. PubMed ID: 33693903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble carbohydrate concentration and expression of expansin and xyloglucan endotransglucosylase/hydrolase genes in epidermal and parenchyma cells during lily flower opening.
    Watanabe Y; Niki T; Norikoshi R; Nakano M; Ichimura K
    J Plant Physiol; 2022 Mar; 270():153615. PubMed ID: 35042009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ARF2-MYB6 module mediates auxin-regulated petal expansion in rose.
    Chen C; Hussain N; Ma Y; Zuo L; Jiang Y; Sun X; Gao J
    J Exp Bot; 2023 Aug; 74(15):4489-4502. PubMed ID: 37158672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals.
    Jiang X; Zhang C; Lü P; Jiang G; Liu X; Dai F; Gao J
    Plant Biotechnol J; 2014 Jan; 12(1):38-48. PubMed ID: 24011328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous knock-down of six β-galactosidase genes in petunia petals prevents loss of pectic galactan but decreases petal strength.
    O'Donoghue EM; Somerfield SD; Deroles SC; Sutherland PW; Hallett IC; Erridge ZA; Brummell DA; Hunter DA
    Plant Physiol Biochem; 2017 Apr; 113():208-221. PubMed ID: 28254702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion.
    Ma N; Xue J; Li Y; Liu X; Dai F; Jia W; Luo Y; Gao J
    Plant Physiol; 2008 Oct; 148(2):894-907. PubMed ID: 18715962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactose metabolism in cell walls of opening and senescing petunia petals.
    O'Donoghue EM; Somerfield SD; Watson LM; Brummell DA; Hunter DA
    Planta; 2009 Feb; 229(3):709-21. PubMed ID: 19082620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructan Hydrolysis Drives Petal Expansion in the Ephemeral Daylily Flower.
    Bieleski RL
    Plant Physiol; 1993 Sep; 103(1):213-219. PubMed ID: 12231928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.
    Lü P; Zhang C; Liu J; Liu X; Jiang G; Jiang X; Khan MA; Wang L; Hong B; Gao J
    Plant J; 2014 May; 78(4):578-90. PubMed ID: 24589134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of Morning Glory, Ipomoea tricolor cv. Heavenly Blue.
    Yoshida K; Kawachi M; Mori M; Maeshima M; Kondo M; Nishimura M; Kondo T
    Plant Cell Physiol; 2005 Mar; 46(3):407-15. PubMed ID: 15695444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RhRab5ip, a new interactor of RhPIP1;1, was involved in flower opening of cut rose during water deficit.
    Chen W; Zhou Y; Wu H; Zhang S; Yang R; Liu X
    Plant Physiol Biochem; 2022 Jun; 181():61-70. PubMed ID: 35430395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome and Ubiquitome Changes during Rose Petal Senescence.
    Lu J; Xu Y; Fan Y; Wang Y; Zhang G; Liang Y; Jiang C; Hong B; Gao J; Ma C
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic accumulation of flavonoids in flower petals and its relevance to yellow flower colouration.
    Markham KR; Gould KS; Ryan KG
    Phytochemistry; 2001 Oct; 58(3):403-13. PubMed ID: 11557072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues.
    Pullman GS; Buchanan M
    Tree Physiol; 2008 Jul; 28(7):985-96. PubMed ID: 18450563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate content and its roles in alternate bearing in olive.
    Nejad MS; Niroomand A
    Pak J Biol Sci; 2007 Aug; 10(16):2744-7. PubMed ID: 19070095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal.
    Bhushan B; Her EK
    Langmuir; 2010 Jun; 26(11):8207-17. PubMed ID: 20131881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds.
    Bergougnoux V; Caissard JC; Jullien F; Magnard JL; Scalliet G; Cock JM; Hugueney P; Baudino S
    Planta; 2007 Sep; 226(4):853-66. PubMed ID: 17520281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flower proteome: changes in protein spectrum during the advanced stages of rose petal development.
    Dafny-Yelin M; Guterman I; Menda N; Ovadis M; Shalit M; Pichersky E; Zamir D; Lewinsohn E; Adam Z; Weiss D; Vainstein A
    Planta; 2005 Sep; 222(1):37-46. PubMed ID: 15883834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.