These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20183979)

  • 21. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.
    Kaasik A; Vohla C; Mõtlep R; Mander U; Kirsimäe K
    Water Res; 2008 Feb; 42(4-5):1315-23. PubMed ID: 17959214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissolved phosphorus retention of light-weight expanded shale and masonry sand used in subsurface flow treatment wetlands.
    Forbes MG; Dickson KR; Golden TD; Hudak P; Doyle RD
    Environ Sci Technol; 2004 Feb; 38(3):892-8. PubMed ID: 14968879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds.
    Arias CA; Del Bubba M; Brix H
    Water Res; 2001 Apr; 35(5):1159-68. PubMed ID: 11268836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands.
    Vacca G; Wand H; Nikolausz M; Kuschk P; Kästner M
    Water Res; 2005 Apr; 39(7):1361-73. PubMed ID: 15862336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction waste as substrate in vertical subsuperficial constructed wetlands treating organic matter, ibuprofenhene, acetaminophen and ethinylestradiol from low-strength synthetic wastewater.
    Marcelino GR; Carvalho KQ; Lima MX; Passig FH; Belini AD; Bernardelli JKB; Nagalli A
    Sci Total Environ; 2020 Aug; 728():138771. PubMed ID: 32570322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands--adsorption studies.
    Hua T; Haynes RJ; Zhou YF; Boullemant A; Chandrawana I
    Water Res; 2015 Mar; 71():32-41. PubMed ID: 25589434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater.
    Schierano MC; Panigatti MC; Maine MA
    Int J Phytoremediation; 2018 Jul; 20(9):895-900. PubMed ID: 29873535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands.
    Blanco I; Molle P; Sáenz de Miera LE; Ansola G
    Water Res; 2016 Feb; 89():355-65. PubMed ID: 26722756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal.
    Tee HC; Seng CE; Noor AM; Lim PE
    Sci Total Environ; 2009 May; 407(11):3563-71. PubMed ID: 19272632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigations on phosphorus retention in subsurface flow constructed wetlands.
    Rustige H; Tomac I; Höner G
    Water Sci Technol; 2003; 48(5):67-74. PubMed ID: 14621149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effects of enhanced dephosphorization in the constructed wetland using water-granulated slag as matrix].
    Li HB; Yang RS; Li XD; Sun TH
    Huan Jing Ke Xue; 2009 Aug; 30(8):2302-8. PubMed ID: 19799292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater.
    Wu S; Chen Z; Braeckevelt M; Seeger EM; Dong R; Kästner M; Paschke H; Hahn A; Kayser G; Kuschk P
    Water Res; 2012 Apr; 46(6):1923-32. PubMed ID: 22289675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of pollutants (COD, TSS, and NO
    Saharimoghaddam N; Massoudinejad M; Ghaderpoori M
    Environ Geochem Health; 2019 Jun; 41(3):1433-1444. PubMed ID: 30535545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological Cr(VI) removal using bio-filters and constructed wetlands.
    Michailides MK; Sultana MY; Tekerlekopoulou AG; Akratos CS; Vayenas DV
    Water Sci Technol; 2013; 68(10):2228-33. PubMed ID: 24292472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions.
    Molle P; Liénard A; Grasmick A; Iwema A
    Water Sci Technol; 2003; 48(5):75-83. PubMed ID: 14621150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Innovative Design of a Clay-Zeolite Medium for the Adsorption of Total Phosphorus from Wastewater.
    Ciosek AL; Luk GK; Warner M; Warner RA
    Water Environ Res; 2016 Feb; 88(2):131-41. PubMed ID: 26111375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative study of five horizontal subsurface flow constructed wetlands using different plant species for domestic wastewater treatment.
    Villaseñor Camacho J; De Lucas Martínez A; Gómez Gómez R; Mena Sanz J
    Environ Technol; 2007 Dec; 28(12):1333-43. PubMed ID: 18341144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay.
    Sari A; Tuzen M; Soylak M
    J Hazard Mater; 2007 Jun; 144(1-2):41-6. PubMed ID: 17079075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of phosphorus and nitrogen from domestic wastewater using a mineralized refuse-based bioreactor.
    Zhang HH; Tian JS; Zhang YM; Wu ZL; Kong XJ; Chao JY; Hu Y; Li DL
    Environ Technol; 2012; 33(1-3):173-81. PubMed ID: 22519101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorus removal in laboratory-scale unvegetated vertical subsurface flow constructed wetland systems using alum sludge as main substrate.
    Babatunde AO; Zhao YQ
    Water Sci Technol; 2009; 60(2):483-9. PubMed ID: 19633391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.