These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 20184157)
21. [Temporal variability in model coefficients: Bupalus piniarius as a case study]. Nedorezov LV Zh Obshch Biol; 2013; 74(1):34-42. PubMed ID: 23659112 [TBL] [Abstract][Full Text] [Related]
22. A three-stage discrete-time population model: continuous versus seasonal reproduction. Ackleh AS; Dib YM; Jang SR J Biol Dyn; 2007 Oct; 1(4):291-304. PubMed ID: 22876818 [TBL] [Abstract][Full Text] [Related]
23. Fecundity of the autumnal moth depends on pooled geometrid abundance without a time lag: implications for cyclic population dynamics. Klemola T; Andersson T; Ruohomäki K J Anim Ecol; 2008 May; 77(3):597-604. PubMed ID: 18284477 [TBL] [Abstract][Full Text] [Related]
24. [Svirezhev's substitution principle and matrix models for dynamics of populations with complex structures]. Logofet DO Zh Obshch Biol; 2010; 71(1):30-40. PubMed ID: 20184156 [TBL] [Abstract][Full Text] [Related]
25. On the evolution of the timing of reproduction. Eskola HT Theor Popul Biol; 2009; 75(2-3):98-108. PubMed ID: 19136020 [TBL] [Abstract][Full Text] [Related]
26. Simplifying a physiologically structured population model to a stage-structured biomass model. De Roos AM; Schellekens T; Van Kooten T; Van De Wolfshaar K; Claessen D; Persson L Theor Popul Biol; 2008 Feb; 73(1):47-62. PubMed ID: 18006030 [TBL] [Abstract][Full Text] [Related]
27. Birth, growth and death as structuring operators in bacterial population dynamics. Lavric V; Graham DW J Theor Biol; 2010 May; 264(1):45-54. PubMed ID: 20097208 [TBL] [Abstract][Full Text] [Related]
28. Modelling density-dependent resistance in insect-pathogen interactions. White KA; Wilson K Theor Popul Biol; 1999 Oct; 56(2):163-81. PubMed ID: 10544067 [TBL] [Abstract][Full Text] [Related]
29. A derivative matching approach to moment closure for the stochastic logistic model. Singh A; Hespanha JP Bull Math Biol; 2007 Aug; 69(6):1909-25. PubMed ID: 17443391 [TBL] [Abstract][Full Text] [Related]
30. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models. Block GL; Allen LJ Bull Math Biol; 2000 Mar; 62(2):199-228. PubMed ID: 10824427 [TBL] [Abstract][Full Text] [Related]
31. Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Persson L; Leonardsson K; de Roos AM; Gyllenberg M; Christensen B Theor Popul Biol; 1998 Dec; 54(3):270-93. PubMed ID: 9878605 [TBL] [Abstract][Full Text] [Related]
32. Individual size variation and population stability in a seasonal environment: a discrete-time model and its calibration using grasshoppers. Filin I; Ovadia O Am Nat; 2007 Nov; 170(5):719-33. PubMed ID: 17926294 [TBL] [Abstract][Full Text] [Related]
33. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
35. Continuous-time models of host-parasitoid interactions. Ives AR Am Nat; 1992 Jul; 140(1):1-29. PubMed ID: 19426063 [TBL] [Abstract][Full Text] [Related]
36. On the accuracy of a diffusion approximation to a discrete state-space Markovian model of a population. Varughese MM Theor Popul Biol; 2009 Dec; 76(4):241-7. PubMed ID: 19703483 [TBL] [Abstract][Full Text] [Related]
37. Periodic and quasi-periodic behavior in resource-dependent age structured population models. Dilão R; Domingos T Bull Math Biol; 2001 Mar; 63(2):207-30. PubMed ID: 11276524 [TBL] [Abstract][Full Text] [Related]
38. Intermittent chaos in population dynamics. Doebeli M J Theor Biol; 1994 Feb; 166(3):325-30. PubMed ID: 8159017 [TBL] [Abstract][Full Text] [Related]
39. Models for bounded systems with continuous dynamics. Cangelosi AR; Hooten MB Biometrics; 2009 Sep; 65(3):850-6. PubMed ID: 19210728 [TBL] [Abstract][Full Text] [Related]
40. On linear perturbations of the Ricker model. Braverman E; Kinzebulatov D Math Biosci; 2006 Aug; 202(2):323-39. PubMed ID: 16797042 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]