BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 20184306)

  • 1. Metal cation dependence of interactions with amino acids: bond energies of Rb+ to Gly, Ser, Thr, and Pro.
    Bowman VN; Heaton AL; Armentrout PB
    J Phys Chem B; 2010 Mar; 114(11):4107-14. PubMed ID: 20184306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal cation dependence of interactions with amino acids: bond energies of Cs+ to Gly, Pro, Ser, Thr, and Cys.
    Armentrout PB; Chen Y; Rodgers MT
    J Phys Chem A; 2012 Apr; 116(16):3989-99. PubMed ID: 22452793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal cation dependence of interactions with amino acids: bond energies of Rb+ and Cs+ to Met, Phe, Tyr, and Trp.
    Armentrout PB; Yang B; Rodgers MT
    J Phys Chem B; 2013 Apr; 117(14):3771-81. PubMed ID: 23514190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental and theoretical study of alkali metal cation interactions with cysteine.
    Armentrout PB; Armentrout EI; Clark AA; Cooper TE; Stennett EM; Carl DR
    J Phys Chem B; 2010 Mar; 114(11):3927-37. PubMed ID: 20184310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and theoretical investigation of alkali metal cation interactions with hydroxyl side-chain amino acids.
    Ye SJ; Clark AA; Armentrout PB
    J Phys Chem B; 2008 Aug; 112(33):10291-302. PubMed ID: 18665628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.
    Armentrout PB; Yang B; Rodgers MT
    J Phys Chem B; 2014 Apr; 118(16):4300-14. PubMed ID: 24528155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The special five-membered ring of proline: An experimental and theoretical investigation of alkali metal cation interactions with proline and its four- and six-membered ring analogues.
    Moision RM; Armentrout PB
    J Phys Chem A; 2006 Mar; 110(11):3933-46. PubMed ID: 16539415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical studies of potassium cation interactions with the acidic amino acids and their amide derivatives.
    Heaton AL; Armentrout PB
    J Phys Chem B; 2008 Sep; 112(38):12056-65. PubMed ID: 18729510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermochemistry of alkali metal cation interactions with histidine: influence of the side chain.
    Armentrout PB; Citir M; Chen Y; Rodgers MT
    J Phys Chem A; 2012 Dec; 116(48):11823-32. PubMed ID: 23163558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical studies of sodium cation interactions with the acidic amino acids and their amide derivatives.
    Heaton AL; Moision RM; Armentrout PB
    J Phys Chem A; 2008 Apr; 112(15):3319-27. PubMed ID: 18355061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and theoretical studies of sodium cation complexes of the deamidation and dehydration products of asparagine, glutamine, aspartic acid, and glutamic acid.
    Heaton AL; Ye SJ; Armentrout PB
    J Phys Chem A; 2008 Apr; 112(15):3328-38. PubMed ID: 18355065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical investigation of the decomposition of lithiated hydroxyl side-chain amino acids.
    Ye SJ; Armentrout PB
    J Phys Chem B; 2008 Aug; 112(33):10303-13. PubMed ID: 18665627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium cation affinities of matrix assisted laser desorption ionization matrices determined by threshold collision-induced dissociation: application to benzoic acid derivatives.
    Chinthaka SD; Rodgers MT
    J Phys Chem A; 2007 Aug; 111(33):8152-62. PubMed ID: 17672435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical studies of sodium cation interactions with D-arabinose, xylose, glucose, and galactose.
    Heaton AL; Armentrout PB
    J Phys Chem A; 2008 Oct; 112(41):10156-67. PubMed ID: 18798601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation-pi interactions with a model for the side chain of tryptophan: structures and absolute binding energies of alkali metal cation-indole complexes.
    Ruan C; Yang Z; Hallowita N; Rodgers MT
    J Phys Chem A; 2005 Dec; 109(50):11539-50. PubMed ID: 16354046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium cation affinities of MALDI matrices determined by guided ion beam tandem mass spectrometry: application to benzoic acid derivatives.
    Chinthaka SD; Chu Y; Rannulu NS; Rodgers MT
    J Phys Chem A; 2006 Feb; 110(4):1426-37. PubMed ID: 16435803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipole effects on cation-pi interactions: absolute bond dissociation energies of complexes of alkali metal cations to N-methylaniline and N,N-dimethylaniline.
    Hallowita N; Carl DR; Armentrout PB; Rodgers MT
    J Phys Chem A; 2008 Sep; 112(35):7996-8008. PubMed ID: 18698747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling metal cation-phosphate interactions in nucleic acids in the gas phase via alkali metal cation-triethyl phosphate complexes.
    Ruan C; Huang H; Rodgers MT
    J Phys Chem A; 2007 Dec; 111(51):13521-7. PubMed ID: 18052264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of zwitterionic structures of amino acids (Gly, Ala, Val, Leu, Ile, Ser and Pro) by ammonium ions in the gas phase.
    Wu R; McMahon TB
    J Am Chem Soc; 2008 Mar; 130(10):3065-78. PubMed ID: 18271581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.