These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts. Jiang Y; Wang P; Lin L Nanotechnology; 2011 Sep; 22(36):365704. PubMed ID: 21836331 [TBL] [Abstract][Full Text] [Related]
27. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Xiao L; Zhang Y; Wang Y; Liu K; Wang Z; Li T; Jiang Z; Shi J; Liu L; Li Q; Zhao Y; Feng Z; Fan S; Jiang K Nanotechnology; 2011 Jan; 22(2):025502. PubMed ID: 21135478 [TBL] [Abstract][Full Text] [Related]
29. Direct wall number control of carbon nanotube forests from engineered iron catalysts. Chiang WH; Futaba DN; Yumura M; Hata K J Nanosci Nanotechnol; 2013 Apr; 13(4):2745-51. PubMed ID: 23763154 [TBL] [Abstract][Full Text] [Related]
30. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth. Bedewy M; Farmer B; Hart AJ ACS Nano; 2014 Jun; 8(6):5799-812. PubMed ID: 24794192 [TBL] [Abstract][Full Text] [Related]
31. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth. Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511 [TBL] [Abstract][Full Text] [Related]
32. Robust and aligned carbon nanotube/titania core/shell films for flexible TCO-free photoelectrodes. Di J; Yong Z; Yao Z; Liu X; Shen X; Sun B; Zhao Z; He H; Li Q Small; 2013 Jan; 9(1):148-55. PubMed ID: 22965581 [TBL] [Abstract][Full Text] [Related]
33. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Pumera M; Merkoçi A; Alegret S Electrophoresis; 2007 Apr; 28(8):1274-80. PubMed ID: 17366488 [TBL] [Abstract][Full Text] [Related]
34. Effects of morphology on the micro-compression response of carbon nanotube forests. Abadi PP; Hutchens SB; Greer JR; Cola BA; Graham S Nanoscale; 2012 Jun; 4(11):3373-80. PubMed ID: 22543679 [TBL] [Abstract][Full Text] [Related]
35. Formation of Highly Pure and Patterned Carbon Nanotube Films on a Variety of Substrates by a Wet Process Based on Light-Induced Dispersibility Switching. Jintoku H; Sato T; Nakazumi T; Matsuzawa Y; Kihara H; Yoshida M ACS Appl Mater Interfaces; 2017 Sep; 9(36):30805-30811. PubMed ID: 28834432 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning. Ryu SW; Hwang JW; Hong SH J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627 [TBL] [Abstract][Full Text] [Related]
37. Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. Hart AJ; Slocum AH J Phys Chem B; 2006 Apr; 110(16):8250-7. PubMed ID: 16623503 [TBL] [Abstract][Full Text] [Related]
38. Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics. Zhu L; Hess DW; Wong CP J Phys Chem B; 2006 Mar; 110(11):5445-9. PubMed ID: 16539482 [TBL] [Abstract][Full Text] [Related]
40. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures. Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]