These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20184449)

  • 1. Mass spectroscopy and molecular modeling predict endothelial nitric oxide synthase dimer collapse by hydrogen peroxide through zinc tetrathiolate metal-binding site disruption.
    Fonseca FV; Ravi K; Wiseman D; Tummala M; Harmon C; Ryzhov V; Fineman JR; Black SM
    DNA Cell Biol; 2010 Mar; 29(3):149-60. PubMed ID: 20184449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition.
    Chen W; Druhan LJ; Chen CA; Hemann C; Chen YR; Berka V; Tsai AL; Zweier JL
    Biochemistry; 2010 Apr; 49(14):3129-37. PubMed ID: 20184376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the cysteine nitrosylation sites in human endothelial nitric oxide synthase.
    Tummala M; Ryzhov V; Ravi K; Black SM
    DNA Cell Biol; 2008 Jan; 27(1):25-33. PubMed ID: 17941803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of biopterin-dependent pathways of eNOS for nitric oxide and superoxide production.
    Kar S; Kavdia M
    Free Radic Biol Med; 2011 Oct; 51(7):1411-27. PubMed ID: 21742028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: contribution to placental endothelial nitric oxide synthase activity.
    Tóth M; Kukor Z; Valent S
    Mol Hum Reprod; 2002 Mar; 8(3):271-80. PubMed ID: 11870235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propofol protects against high glucose-induced endothelial dysfunction in human umbilical vein endothelial cells.
    Zhu M; Chen J; Tan Z; Wang J
    Anesth Analg; 2012 Feb; 114(2):303-9. PubMed ID: 22156331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of modulating eNOS activity and coupling in ischemia/reperfusion (I/R).
    Perkins KA; Pershad S; Chen Q; McGraw S; Adams JS; Zambrano C; Krass S; Emrich J; Bell B; Iyamu M; Prince C; Kay H; Teng JC; Young LH
    Naunyn Schmiedebergs Arch Pharmacol; 2012 Jan; 385(1):27-38. PubMed ID: 21947254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pivotal role for tryptophan 447 in enzymatic coupling of human endothelial nitric oxide synthase (eNOS): effects on tetrahydrobiopterin-dependent catalysis and eNOS dimerization.
    Benson MA; Batchelor H; Chuaiphichai S; Bailey J; Zhu H; Stuehr DJ; Bhattacharya S; Channon KM; Crabtree MJ
    J Biol Chem; 2013 Oct; 288(41):29836-45. PubMed ID: 23965989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein engineering to develop a redox insensitive endothelial nitric oxide synthase.
    Rafikov R; Kumar S; Aggarwal S; Pardo D; Fonseca FV; Ransom J; Rafikova O; Chen Q; Springer ML; Black SM
    Redox Biol; 2014; 2():156-64. PubMed ID: 25460726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity.
    Ravi K; Brennan LA; Levic S; Ross PA; Black SM
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2619-24. PubMed ID: 14983058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen peroxide decreases endothelial nitric oxide synthase promoter activity through the inhibition of Sp1 activity.
    Kumar S; Sun X; Wiseman DA; Tian J; Umapathy NS; Verin AD; Black SM
    DNA Cell Biol; 2009 Mar; 28(3):119-29. PubMed ID: 19105596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing dihydrobiopterin causes dysfunction of endothelial nitric oxide synthase in rats in vivo.
    Noguchi K; Hamadate N; Matsuzaki T; Sakanashi M; Nakasone J; Uchida T; Arakaki K; Kubota H; Ishiuchi S; Masuzaki H; Sugahara K; Ohya Y; Sakanashi M; Tsutsui M
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H721-9. PubMed ID: 21622822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication between the zinc and tetrahydrobiopterin binding sites in nitric oxide synthase.
    Chreifi G; Li H; McInnes CR; Gibson CL; Suckling CJ; Poulos TL
    Biochemistry; 2014 Jul; 53(25):4216-23. PubMed ID: 24819538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS.
    Crabtree MJ; Smith CL; Lam G; Goligorsky MS; Gross SS
    Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1530-40. PubMed ID: 18192221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells.
    Erwin PA; Lin AJ; Golan DE; Michel T
    J Biol Chem; 2005 May; 280(20):19888-94. PubMed ID: 15774480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity.
    Rafikov R; Fonseca FV; Kumar S; Pardo D; Darragh C; Elms S; Fulton D; Black SM
    J Endocrinol; 2011 Sep; 210(3):271-84. PubMed ID: 21642378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice.
    d'Uscio LV; Smith LA; Katusic ZS
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2227-34. PubMed ID: 21963838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study.
    Vásquez-Vivar J; Martásek P; Whitsett J; Joseph J; Kalyanaraman B
    Biochem J; 2002 Mar; 362(Pt 3):733-9. PubMed ID: 11879202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of eNOS-derived superoxide by caveolin-1: a biopterin-dependent mechanism.
    Karuppiah K; Druhan LJ; Chen CA; Smith T; Zweier JL; Sessa WC; Cardounel AJ
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H903-11. PubMed ID: 21724868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.