These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20185133)

  • 1. Quantifying fluid shear stress in a rocking culture dish.
    Zhou X; Liu D; You L; Wang L
    J Biomech; 2010 May; 43(8):1598-602. PubMed ID: 20185133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel cone-and-plate flow chamber with controlled distribution of wall fluid shear stress.
    Ye C; Ali S; Sun Q; Guo M; Liu Y; Gao Y; Huo B
    Comput Biol Med; 2019 Mar; 106():140-148. PubMed ID: 30721821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a high-throughput cone-and-plate apparatus for the application of defined spatiotemporal flow to cultured cells.
    Spruell C; Baker AB
    Biotechnol Bioeng; 2013 Jun; 110(6):1782-93. PubMed ID: 23280552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal resolution of shear in an orbiting petri dish.
    Thomas JM; Chakraborty A; Sharp MK; Berson RE
    Biotechnol Prog; 2011; 27(2):460-5. PubMed ID: 21302366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Feasibility of quantified fluid shear stress loading on osteoblasts through rocking system].
    Shen Y; Ouyang K; Wu Y; Xu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):889-93. PubMed ID: 23198429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A disk-type apparatus for applying fluid shear stress on cultured endothelial cell.
    Nomura H; Ishikawa C; Komatsuda T; Ando J; Kamiya A
    Biorheology; 1988; 25(3):461-70. PubMed ID: 3250628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of combined cyclic stretch and fluid shear stress on endothelial cell morphological responses.
    Owatverot TB; Oswald SJ; Chen Y; Wille JJ; Yin FC
    J Biomech Eng; 2005 Jun; 127(3):374-82. PubMed ID: 16060344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification.
    Wyma A; Martin-Alarcon L; Walsh T; Schmidt TA; Gates ID; Kallos MS
    Biotechnol Bioeng; 2018 Aug; 115(8):2101-2113. PubMed ID: 29704461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid-Solid Coupling Simulation of Wall Fluid Shear Stress on Cells under Gradient Fluid Flow.
    Zhang X; Gao Y; Huo B
    Appl Bionics Biomech; 2021; 2021():8340201. PubMed ID: 34899981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An advanced cone-and-plate reactor for the in vitro-application of shear stress on adherent cells.
    Dreyer L; Krolitzki B; Autschbach R; Vogt P; Welte T; Ngezahayo A; Glasmacher B
    Clin Hemorheol Microcirc; 2011; 49(1-4):391-7. PubMed ID: 22214709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Migration and differentiation of osteoclast precursors under gradient fluid shear stress.
    Gao Y; Li T; Sun Q; Ye C; Guo M; Chen Z; Chen J; Huo B
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1731-1744. PubMed ID: 31115727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective influence of substrate chemistry with physiological fluid shear stress on human umbilical vein endothelial cells.
    Li Y; Qin Z; Zhou L; Shahzad KA; Xia D
    Cell Biol Int; 2021 Sep; 45(9):1926-1934. PubMed ID: 34009727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis on mechanical state on the osteoclasts under gradient fluid shear stress.
    Zhang X; Sun Q; Ye C; Li T; Jiao F; Gao Y; Huo B
    Biomech Model Mechanobiol; 2022 Aug; 21(4):1067-1078. PubMed ID: 35477827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-L bioreactor.
    Um BH; Hanley TR
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):29-38. PubMed ID: 18425609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells.
    Schnittler HJ; Franke RP; Akbay U; Mrowietz C; Drenckhahn D
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C289-98. PubMed ID: 8338136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid shear stress promotes osteoblast proliferation via the Gαq-ERK5 signaling pathway.
    Bo Z; Bin G; Jing W; Cuifang W; Liping A; Jinglin M; Jin J; Xiaoyi T; Cong C; Ning D; Yayi X
    Connect Tissue Res; 2016 Jul; 57(4):299-306. PubMed ID: 27115838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence.
    Haidekker MA; L'Heureux N; Frangos JA
    Am J Physiol Heart Circ Physiol; 2000 Apr; 278(4):H1401-6. PubMed ID: 10749738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.
    Maleszewska M; Vanchin B; Harmsen MC; Krenning G
    Angiogenesis; 2016 Jan; 19(1):9-24. PubMed ID: 26416763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loading paradigms--intentional and unintentional--for cell culture mechanostimulus.
    Brown TD; Bottlang M; Pedersen DR; Banes AJ
    Am J Med Sci; 1998 Sep; 316(3):162-8. PubMed ID: 9749557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.