These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 20185163)
1. Elimination kinetic model for organic chemicals in earthworms. Dimitrova N; Dimitrov S; Georgieva D; Van Gestel CA; Hankard P; Spurgeon D; Li H; Mekenyan O Sci Total Environ; 2010 Aug; 408(18):3787-93. PubMed ID: 20185163 [TBL] [Abstract][Full Text] [Related]
2. Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils. Šmídová K; Kim S; Hofman J Chemosphere; 2017 Jul; 179():222-231. PubMed ID: 28371706 [TBL] [Abstract][Full Text] [Related]
3. Uptake kinetics of five hydrophobic organic pollutants in the earthworm Eisenia fetida in six different soils. Šmídová K; Hofman J J Hazard Mater; 2014 Feb; 267():175-82. PubMed ID: 24447858 [TBL] [Abstract][Full Text] [Related]
4. Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures. Jager T; Baerselman R; Dijkman E; de Groot AC; Hogendoorn EA; de Jong A; Kruitbosch JA; Peijnenburg WJ Environ Toxicol Chem; 2003 Apr; 22(4):767-75. PubMed ID: 12685711 [TBL] [Abstract][Full Text] [Related]
5. Solid phase microextraction of organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms. Bielská L; Šmídová K; Hofman J Ecotoxicol Environ Saf; 2014 Feb; 100():44-52. PubMed ID: 24433790 [TBL] [Abstract][Full Text] [Related]
6. Earthworm and food interactions on bioaccumulation and disappearance in soil of polycyclic aromatic hydrocarbons: studies on phenanthrene and fluoranthene. Ma WC; Immerzeel J; Bodt J Ecotoxicol Environ Saf; 1995 Dec; 32(3):226-32. PubMed ID: 8964249 [TBL] [Abstract][Full Text] [Related]
7. A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging. Vlčková K; Hofman J Environ Pollut; 2012 Jan; 160(1):49-56. PubMed ID: 22035925 [TBL] [Abstract][Full Text] [Related]
8. Supercritical fluid extraction of persistent organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms. Bielská L; Šmídová K; Hofman J Environ Pollut; 2013 May; 176():48-54. PubMed ID: 23416268 [TBL] [Abstract][Full Text] [Related]
9. PAH-sequestration capacity of granular and powder activated carbon amendments in soil, and their effects on earthworms and plants. Jakob L; Hartnik T; Henriksen T; Elmquist M; Brändli RC; Hale SE; Cornelissen G Chemosphere; 2012 Jul; 88(6):699-705. PubMed ID: 22546631 [TBL] [Abstract][Full Text] [Related]
10. Development of engineered natural organic sorbents for environmental applications: 3. Reducing PAH mobility and bioavailability in contaminated soil and sediment systems. Tang J; Petersen EJ; Huang Q; Weber WJ Environ Sci Technol; 2007 Apr; 41(8):2901-7. PubMed ID: 17533856 [TBL] [Abstract][Full Text] [Related]
11. Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. Díez-Ortiz M; Giska I; Groot M; Borgman EM; Van Gestel CA Chemosphere; 2010 Aug; 80(9):1036-43. PubMed ID: 20674662 [TBL] [Abstract][Full Text] [Related]
12. Bioaccumulation and elimination of 14C-lindane by Enchytraeus albidus in artificial (OECD) and a natural soil. de Barros Amorim MJ; Sousa JP; Nogueira AJ; Soares AM Chemosphere; 2002 Oct; 49(3):323-9. PubMed ID: 12363312 [TBL] [Abstract][Full Text] [Related]
13. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Jonker MT; Van der Heijden SA; Kreitinger JP; Hawthorne SB Environ Sci Technol; 2007 Nov; 41(21):7472-8. PubMed ID: 18044528 [TBL] [Abstract][Full Text] [Related]
14. Bioavailability of xenobiotics in the soil environment. Katayama A; Bhula R; Burns GR; Carazo E; Felsot A; Hamilton D; Harris C; Kim YH; Kleter G; Koedel W; Linders J; Peijnenburg JG; Sabljic A; Stephenson RG; Racke DK; Rubin B; Tanaka K; Unsworth J; Wauchope RD Rev Environ Contam Toxicol; 2010; 203():1-86. PubMed ID: 19957116 [TBL] [Abstract][Full Text] [Related]
15. The effects of aging time on the fraction distribution and bioavailability of PAH. Ma L; Zhang J; Han L; Li W; Xu L; Hu F; Li H Chemosphere; 2012 Mar; 86(10):1072-8. PubMed ID: 22236588 [TBL] [Abstract][Full Text] [Related]
16. [Aging of spiked pyrene in two paddy soils and their particle-size fractions after soil incubation and changes in extractability and bio-availability to earthworm]. Li JH; Pan GX Huan Jing Ke Xue; 2005 Nov; 26(6):131-6. PubMed ID: 16447446 [TBL] [Abstract][Full Text] [Related]
17. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils. Kreitinger JP; Quiñones-Rivera A; Neuhauser EF; Alexander M; Hawthorne SB Environ Toxicol Chem; 2007 Sep; 26(9):1809-17. PubMed ID: 17705650 [TBL] [Abstract][Full Text] [Related]
18. Estimation of the bioaccumulation potential of a nonchlorinated bisphenol and an ionogenic xanthene dye to Eisenia andrei in field-collected soils, in conjunction with predictive in silico profiling. Princz J; Bonnell M; Ritchie E; Velicogna J; Robidoux PY; Scroggins R Environ Toxicol Chem; 2014 Feb; 33(2):308-16. PubMed ID: 24173968 [TBL] [Abstract][Full Text] [Related]
19. An independent prediction of the effect of dissolved organic matter on the transport of polycyclic aromatic hydrocarbons. Sabbah I; Rebhun M; Gerstl Z J Contam Hydrol; 2004 Nov; 75(1-2):55-70. PubMed ID: 15385098 [TBL] [Abstract][Full Text] [Related]
20. Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida). Matscheko N; Lundstedt S; Svensson L; Harju M; Tysklind M Environ Toxicol Chem; 2002 Aug; 21(8):1724-9. PubMed ID: 12152775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]