These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20185163)

  • 21. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials.
    Yang Y; Zhang N; Xue M; Lu ST; Tao S
    Environ Pollut; 2011 Feb; 159(2):591-5. PubMed ID: 21044811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioaccumulation and bioavailability of polybrominated diphenyl ethers [corrected] (PBDEs) in soil.
    Liang X; Zhu S; Chen P; Zhu L
    Environ Pollut; 2010 Jul; 158(7):2387-92. PubMed ID: 20483516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Earthworm assisted bioremediation of organic contaminants.
    Hickman ZA; Reid BJ
    Environ Int; 2008 Oct; 34(7):1072-81. PubMed ID: 18433870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms.
    Petersen EJ; Pinto RA; Landrum PF; Weber WJ
    Environ Sci Technol; 2009 Jun; 43(11):4181-7. PubMed ID: 19569349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uptake and elimination kinetics of trifluralin and pendimethalin in Pheretima spp. and Eisenia spp.
    Goto Y; Sudo M
    Environ Sci Pollut Res Int; 2018 May; 25(13):12352-12360. PubMed ID: 29455354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of models to estimate the bioaccumulation of organic chemicals in earthworms.
    Li J; Hodson ME; Brown CD; Bottoms MJ; Ashauer R; Alvarez T
    Ecotoxicol Environ Saf; 2024 Apr; 275():116240. PubMed ID: 38520811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil.
    Smith BA; Egeler P; Gilberg D; Hendershot W; Stephenson GL
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature-dependent bioaccumulation of polycyclic aromatic hydrocarbons.
    Muijs B; Jonker MT
    Environ Sci Technol; 2009 Jun; 43(12):4517-23. PubMed ID: 19603671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cadmium bioaccumulation factors for terrestrial species: application of the mechanistic bioaccumulation model OMEGA to explain field data.
    Veltman K; Huijbregts MA; Hendriks AJ
    Sci Total Environ; 2008 Dec; 406(3):413-8. PubMed ID: 18722646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of soil properties on bioaccumulation of 14C-simazine in earthworms Eisenia foetida.
    de Andréa MM; Papini S
    J Environ Sci Health B; 2005; 40(1):55-8. PubMed ID: 15656162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on earthworm bioaccumulation and sorption by soils.
    Petersen EJ; Pinto RA; Zhang L; Huang Q; Landrum PF; Weber WJ
    Environ Sci Technol; 2011 Apr; 45(8):3718-24. PubMed ID: 21434629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A reductionist mechanistic model for bioconcentration of neutral and weakly polar organic compounds in fish.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Sep; 32(9):2089-99. PubMed ID: 23703865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils.
    Nahmani J; Hodson ME; Devin S; Vijver MG
    Environ Pollut; 2009 Oct; 157(10):2622-8. PubMed ID: 19482399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The bioavailability of chemicals in soil for earthworms.
    Lanno R; Wells J; Conder J; Bradham K; Basta N
    Ecotoxicol Environ Saf; 2004 Jan; 57(1):39-47. PubMed ID: 14659365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of complexation on the accumulation and elimination kinetics of cadmium and ciprofloxacin in the earthworm Eisenia fetida.
    Wen B; Huang R; Wang P; Zhou Y; Shan XQ; Zhang S
    Environ Sci Technol; 2011 May; 45(10):4339-45. PubMed ID: 21513268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A semi-quantitative approach to deriving a model structure for the uptake of organic chemicals by vegetation.
    Collins CD
    Int J Phytoremediation; 2008; 10(5):371-7. PubMed ID: 19260220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive samplers provide a better prediction of PAH bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions.
    Gomez-Eyles JL; Jonker MT; Hodson ME; Collins CD
    Environ Sci Technol; 2012 Jan; 46(2):962-9. PubMed ID: 22191550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms.
    Lister LJ; Svendsen C; Wright J; Hooper HL; Spurgeon DJ
    Environ Int; 2011 May; 37(4):663-70. PubMed ID: 21329984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of activated carbon amendment on the accumulation and elimination of PCBs in the earthworm Eisenia fetida.
    Paul P; Ghosh U
    Environ Pollut; 2011 Dec; 159(12):3763-8. PubMed ID: 21840094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Desorption of polycyclic aromatic hydrocarbons in soils assisted by SPMD].
    Sun HW; Huo C; Wang CP
    Huan Jing Ke Xue; 2007 Aug; 28(8):1841-6. PubMed ID: 17926421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.