These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 20185172)
1. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function. Wang X; Sun L; Maffini MV; Soto A; Sonnenschein C; Kaplan DL Biomaterials; 2010 May; 31(14):3920-9. PubMed ID: 20185172 [TBL] [Abstract][Full Text] [Related]
2. Preadipocytes stimulate ductal morphogenesis and functional differentiation of human mammary epithelial cells on 3D silk scaffolds. Wang X; Zhang X; Sun L; Subramanian B; Maffini MV; Soto A; Sonnenschein C; Kaplan DL Tissue Eng Part A; 2009 Oct; 15(10):3087-98. PubMed ID: 19338449 [TBL] [Abstract][Full Text] [Related]
3. Hormone-responsive 3D multicellular culture model of human breast tissue. Wang X; Kaplan DL Biomaterials; 2012 Apr; 33(12):3411-20. PubMed ID: 22309836 [TBL] [Abstract][Full Text] [Related]
4. The osteogenic properties of CaP/silk composite scaffolds. Zhang Y; Wu C; Friis T; Xiao Y Biomaterials; 2010 Apr; 31(10):2848-56. PubMed ID: 20071025 [TBL] [Abstract][Full Text] [Related]
5. Milk protein expression and ductal morphogenesis in the mammary gland in vitro: hormone-dependent and -independent phases of adipocyte-mammary epithelial cell interaction. Wiens D; Park CS; Stockdale FE Dev Biol; 1987 Mar; 120(1):245-58. PubMed ID: 3817293 [TBL] [Abstract][Full Text] [Related]
6. An integrative alginate-based 3D in vitro model to explore epithelial-stromal cell dynamics in the breast tumor microenvironment. Barros da Silva P; Oliveira RJA; Araújo M; Caires HR; Bidarra SJ; Barrias CC Carbohydr Polym; 2024 Oct; 342():122363. PubMed ID: 39048221 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional Mammary Epithelial Cell Morphogenesis Model for Analysis of TGFß Signaling. Rashidian J; Luo K Methods Mol Biol; 2016; 1344():121-35. PubMed ID: 26520121 [TBL] [Abstract][Full Text] [Related]
8. Apical polarity in three-dimensional culture systems: where to now? Inman JL; Bissell MJ J Biol; 2010; 9(1):2. PubMed ID: 20092610 [TBL] [Abstract][Full Text] [Related]
9. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. Ewald AJ; Huebner RJ; Palsdottir H; Lee JK; Perez MJ; Jorgens DM; Tauscher AN; Cheung KJ; Werb Z; Auer M J Cell Sci; 2012 Jun; 125(Pt 11):2638-54. PubMed ID: 22344263 [TBL] [Abstract][Full Text] [Related]
10. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional coculture of primary hepatocytes and stellate cells in silk scaffold improves hepatic morphology and functionality in vitro. Wei G; Wang J; Lv Q; Liu M; Xu H; Zhang H; Jin L; Yu J; Wang X J Biomed Mater Res A; 2018 Aug; 106(8):2171-2180. PubMed ID: 29607608 [TBL] [Abstract][Full Text] [Related]
12. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Sokol ES; Miller DH; Breggia A; Spencer KC; Arendt LM; Gupta PB Breast Cancer Res; 2016 Mar; 18(1):19. PubMed ID: 26926363 [TBL] [Abstract][Full Text] [Related]
13. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Shekhar MP; Werdell J; Santner SJ; Pauley RJ; Tait L Cancer Res; 2001 Feb; 61(4):1320-6. PubMed ID: 11245428 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional tissue culture model of human breast cancer for the evaluation of multidrug resistance. Ding Y; Liu W; Yu W; Lu S; Liu M; Kaplan DL; Wang X J Tissue Eng Regen Med; 2018 Sep; 12(9):1959-1971. PubMed ID: 30055109 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling. Tang J; Enderling H; Becker-Weimann S; Pham C; Polyzos A; Chen CY; Costes SV Integr Biol (Camb); 2011 Apr; 3(4):408-21. PubMed ID: 21373705 [TBL] [Abstract][Full Text] [Related]
16. Interaction with endothelial cells is a prerequisite for branching ductal-alveolar morphogenesis and hyperplasia of preneoplastic human breast epithelial cells: regulation by estrogen. Shekhar MP; Werdell J; Tait L Cancer Res; 2000 Jan; 60(2):439-49. PubMed ID: 10667599 [TBL] [Abstract][Full Text] [Related]
17. Hugl1 and Hugl2 in mammary epithelial cells: polarity, proliferation, and differentiation. Russ A; Louderbough JM; Zarnescu D; Schroeder JA PLoS One; 2012; 7(10):e47734. PubMed ID: 23110097 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells. Qu Y; Han B; Yu Y; Yao W; Bose S; Karlan BY; Giuliano AE; Cui X PLoS One; 2015; 10(7):e0131285. PubMed ID: 26147507 [TBL] [Abstract][Full Text] [Related]
19. Stromal-epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands. Zhong A; Wang G; Yang J; Xu Q; Yuan Q; Yang Y; Xia Y; Guo K; Horch RE; Sun J J Cell Mol Med; 2014 Jul; 18(7):1257-66. PubMed ID: 24720804 [TBL] [Abstract][Full Text] [Related]
20. Fibroblasts direct differentiation of human breast epithelial progenitors. Morsing M; Kim J; Villadsen R; Goldhammer N; Jafari A; Kassem M; Petersen OW; Rønnov-Jessen L Breast Cancer Res; 2020 Sep; 22(1):102. PubMed ID: 32993755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]