These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 2018528)
1. Fluidity of bacterial membrane lipids monitored by intramolecular excimerization of 1.3-di(2-pyrenyl)propane. Jurado AS; Almeida LM; Madeira VM Biochem Biophys Res Commun; 1991 Apr; 176(1):356-63. PubMed ID: 2018528 [TBL] [Abstract][Full Text] [Related]
2. Physical studies on membrane lipids of Bacillus stearothermophilus temperature and calcium effects. Jurado AS; Pinheiro TJ; Madeira VM Arch Biochem Biophys; 1991 Aug; 289(1):167-79. PubMed ID: 1898060 [TBL] [Abstract][Full Text] [Related]
3. Effects of lindane on membrane fluidity: intramolecular excimerization of a pyrene derivative and polarization of diphenylhexatriene. Antunes-Madeira MC; Almeida LM; Madeira VM Biochim Biophys Acta; 1990 Feb; 1022(1):110-4. PubMed ID: 1689182 [TBL] [Abstract][Full Text] [Related]
4. Fluidity of sarcoplasmic reticulum membranes investigated with dipyrenylpropane, an intramolecular excimer probe. Almeida LM; Vaz WL; Zachariasse KA; Madeira VM Biochemistry; 1982 Nov; 21(23):5972-7. PubMed ID: 7150540 [TBL] [Abstract][Full Text] [Related]
5. Parinaroyl and pyrenyl phospholipids as probes for the lipid surface layer of human low density lipoproteins. Vauhkonen M; Somerharju P Biochim Biophys Acta; 1989 Aug; 984(1):81-7. PubMed ID: 2765542 [TBL] [Abstract][Full Text] [Related]
6. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships. Reizer J; Grossowicz N; Barenholz Y Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029 [TBL] [Abstract][Full Text] [Related]
7. Lipid composition and dynamics of cell membranes of Bacillus stearothermophilus adapted to amiodarone. Rosa SM; Antunes-Madeira MC; Matos MJ; Jurado AS; Madeira VM Biochim Biophys Acta; 2000 Sep; 1487(2-3):286-95. PubMed ID: 11018480 [TBL] [Abstract][Full Text] [Related]
8. The influence of saturated fatty acid modulation of bilayer physical state on cellular and membrane structure and function. Chester DW; Tourtellotte ME; Melchior DL; Romano AH Biochim Biophys Acta; 1986 Aug; 860(2):383-98. PubMed ID: 3741857 [TBL] [Abstract][Full Text] [Related]
9. Modulation of sarcoplasmic reticulum Ca2+-pump activity by membrane fluidity. Almeida LM; Vaz WL; Zachariasse KA; Madeira VM Biochemistry; 1984 Sep; 23(20):4714-20. PubMed ID: 6238620 [TBL] [Abstract][Full Text] [Related]
10. Effects of DDE on the fluidity of model and native membranes: implications for the mechanisms of toxicity. Antunes-Madeira Mdo C; Madeira VM Biochim Biophys Acta; 1993 Jun; 1149(1):86-92. PubMed ID: 8318533 [TBL] [Abstract][Full Text] [Related]
11. The anticancer drug tamoxifen induces changes in the physical properties of model and native membranes. Custódio JB; Almeida LM; Madeira VM Biochim Biophys Acta; 1993 Aug; 1150(2):123-9. PubMed ID: 8347666 [TBL] [Abstract][Full Text] [Related]
12. The effect of ethanol on the physical properties of neuronal membranes. Bae MK; Jeong DK; Park NS; Lee CH; Cho BH; Jang HO; Yun I Mol Cells; 2005 Jun; 19(3):356-64. PubMed ID: 15995352 [TBL] [Abstract][Full Text] [Related]
13. Determination of microviscosity and location of 1,3-Di(1-pyrenyl)propane in brain membranes. Kang JS; Kang IG; Yun I Arch Pharm Res; 1997 Feb; 20(1):1-6. PubMed ID: 18975203 [TBL] [Abstract][Full Text] [Related]
14. Alterations in lipid composition and fluidity of liver plasma membranes in copper-deficient rats. Lei KY; Rosenstein F; Shi F; Hassel CA; Carr TP; Zhang J Proc Soc Exp Biol Med; 1988 Jul; 188(3):335-41. PubMed ID: 2969111 [TBL] [Abstract][Full Text] [Related]
15. Escherichia coli membrane fluidity as detected by excimerization of dipyrenylpropane: sensitivity to the bacterial fatty acid profile. Mejía R; Gómez-Eichelmann MC; Fernández MS Arch Biochem Biophys; 1999 Aug; 368(1):156-60. PubMed ID: 10415123 [TBL] [Abstract][Full Text] [Related]
16. Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. Aricha B; Fishov I; Cohen Z; Sikron N; Pesakhov S; Khozin-Goldberg I; Dagan R; Porat N J Bacteriol; 2004 Jul; 186(14):4638-44. PubMed ID: 15231797 [TBL] [Abstract][Full Text] [Related]
17. Effects of dopamine HCl on structural parameters of bovine brain membranes. Bae MK; Huh MH; Lee SW; Kang HG; Pyun JH; Kwak MH; Jang HO; Yun I Arch Pharm Res; 2004 Jun; 27(6):653-61. PubMed ID: 15283469 [TBL] [Abstract][Full Text] [Related]
18. Phase separation induced by melittin in negatively-charged phospholipid bilayers as detected by fluorescence polarization and differential scanning calorimetry. Bernard E; Faucon JF; Dufourcq J Biochim Biophys Acta; 1982 May; 688(1):152-62. PubMed ID: 7093270 [TBL] [Abstract][Full Text] [Related]
19. Pyrene as a membrane depth gauge: wavelength selective fluorescence approach to monitor pyrene localizations in the membrane. Mazor S; Vanounou S; Fishov I Chem Phys Lipids; 2012 Jan; 165(1):125-31. PubMed ID: 22133729 [TBL] [Abstract][Full Text] [Related]
20. Investigation of human erythrocyte ghost membranes with intramolecular excimer probes. Zachariasse KA; Vaz WL; Sotomayor C; Kühnle W Biochim Biophys Acta; 1982 Jun; 688(2):323-32. PubMed ID: 7104326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]