BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 20185294)

  • 1. Computational models of cognitive control.
    O'Reilly RC; Herd SA; Pauli WM
    Curr Opin Neurobiol; 2010 Apr; 20(2):257-61. PubMed ID: 20185294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition.
    Crowe DA; Goodwin SJ; Blackman RK; Sakellaridi S; Sponheim SR; MacDonald AW; Chafee MV
    Nat Neurosci; 2013 Oct; 16(10):1484-91. PubMed ID: 23995071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex.
    Goodwin SJ; Blackman RK; Sakellaridi S; Chafee MV
    J Neurosci; 2012 Mar; 32(10):3499-515. PubMed ID: 22399773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When desire collides with reason: functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires.
    Diekhof EK; Gruber O
    J Neurosci; 2010 Jan; 30(4):1488-93. PubMed ID: 20107076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive mechanism of cognitive control system.
    Morishima Y; Okuda J; Sakai K
    Cereb Cortex; 2010 Nov; 20(11):2675-83. PubMed ID: 20154012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation.
    Kehagia AA; Murray GK; Robbins TW
    Curr Opin Neurobiol; 2010 Apr; 20(2):199-204. PubMed ID: 20167474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence.
    Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL
    Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Primate Prefrontal Cortex in Bias and Shift Between Visual Dimensions.
    Mansouri FA; Buckley MJ; Fehring DJ; Tanaka K
    Cereb Cortex; 2020 Jan; 30(1):85-99. PubMed ID: 31220222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning.
    Ridderinkhof KR; van den Wildenberg WP; Segalowitz SJ; Carter CS
    Brain Cogn; 2004 Nov; 56(2):129-40. PubMed ID: 15518930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal cortex and neural mechanisms of executive function.
    Funahashi S; Andreau JM
    J Physiol Paris; 2013 Dec; 107(6):471-82. PubMed ID: 23684970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monkey Prefrontal Neurons Reflect Logical Operations for Cognitive Control in a Variant of the AX Continuous Performance Task (AX-CPT).
    Blackman RK; Crowe DA; DeNicola AL; Sakellaridi S; MacDonald AW; Chafee MV
    J Neurosci; 2016 Apr; 36(14):4067-79. PubMed ID: 27053213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a Rational and Mechanistic Account of Mental Effort.
    Shenhav A; Musslick S; Lieder F; Kool W; Griffiths TL; Cohen JD; Botvinick MM
    Annu Rev Neurosci; 2017 Jul; 40():99-124. PubMed ID: 28375769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motivated cognitive control: reward incentives modulate preparatory neural activity during task-switching.
    Savine AC; Braver TS
    J Neurosci; 2010 Aug; 30(31):10294-305. PubMed ID: 20685974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting the effect of reward on cognitive control using TMS over the left IFJ.
    Hippmann B; Kuhlemann I; Bäumer T; Bahlmann J; Münte TF; Jessen S
    Neuropsychologia; 2019 Mar; 125():109-115. PubMed ID: 30721740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing and Integration of Contextual Information in Monkey Ventrolateral Prefrontal Neurons during Selection and Execution of Goal-Directed Manipulative Actions.
    Bruni S; Giorgetti V; Bonini L; Fogassi L
    J Neurosci; 2015 Aug; 35(34):11877-90. PubMed ID: 26311770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrative theory of prefrontal cortex function.
    Miller EK; Cohen JD
    Annu Rev Neurosci; 2001; 24():167-202. PubMed ID: 11283309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From humble neural beginnings comes knowledge of numbers.
    Pessoa L; Desimone R
    Neuron; 2003 Jan; 37(1):4-6. PubMed ID: 12526766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A long-range fronto-parietal 5- to 10-Hz network predicts "top-down" controlled guidance in a task-switch paradigm.
    Phillips JM; Vinck M; Everling S; Womelsdorf T
    Cereb Cortex; 2014 Aug; 24(8):1996-2008. PubMed ID: 23448872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prefrontal activity in Huntington's disease reflects cognitive and neuropsychiatric disturbances: the IMAGE-HD study.
    Gray MA; Egan GF; Ando A; Churchyard A; Chua P; Stout JC; Georgiou-Karistianis N
    Exp Neurol; 2013 Jan; 239():218-28. PubMed ID: 23123406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.