BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20185349)

  • 1. Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells.
    Rusciano G
    Phys Med; 2010 Oct; 26(4):233-9. PubMed ID: 20185349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal Raman microscopy on single living young and old erythrocytes.
    Kang LL; Huang YX; Liu WJ; Zheng XJ; Wu ZJ; Luo M
    Biopolymers; 2008 Nov; 89(11):951-9. PubMed ID: 18615496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing oxidative stress in single erythrocytes with Raman Tweezers.
    Zachariah E; Bankapur A; Santhosh C; Valiathan M; Mathur D
    J Photochem Photobiol B; 2010 Sep; 100(3):113-6. PubMed ID: 20561796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effect of abnormal cell shape on the spectral distinguishing of erythrocytes using laser tweezers Raman spectroscopy].
    Wang GW; Peng LX; Yao HL; Huang SS; Chen P; Li YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2117-21. PubMed ID: 19839321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy.
    Liu R; Taylor DS; Matthews DL; Chan JW
    Appl Spectrosc; 2010 Nov; 64(11):1308-10. PubMed ID: 21073802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells.
    Ahlawat S; Kumar N; Uppal A; Kumar Gupta P
    J Biophotonics; 2017 Mar; 10(3):415-422. PubMed ID: 26990235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear aspects of changes in deoxygenated hemoglobin concentration and cytochrome oxidase oxidation during brain activation.
    Wobst P; Wenzel R; Kohl M; Obrig H; Villringer A
    Neuroimage; 2001 Mar; 13(3):520-30. PubMed ID: 11170817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of Raman spectroscopy of optically trapped human red blood cell affected by direct current].
    Yue L; Wang G; Fang L; Yao H; Yuan Z; Mo H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):404-8. PubMed ID: 17591270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers.
    Dasgupta R; Ahlawat S; Verma RS; Uppal A; Gupta PK
    J Biomed Opt; 2010; 15(5):055009. PubMed ID: 21054091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy.
    Raj S; Wojdyla M; Petrov D
    Cell Biochem Biophys; 2013 Apr; 65(3):347-61. PubMed ID: 23080020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy.
    Sato H; Kiguchi M; Kawaguchi F; Maki A
    Neuroimage; 2004 Apr; 21(4):1554-62. PubMed ID: 15050579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy.
    Gessner R; Winter C; Rösch P; Schmitt M; Petry R; Kiefer W; Lankers M; Popp J
    Chemphyschem; 2004 Aug; 5(8):1159-70. PubMed ID: 15446738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.
    Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M
    Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral blood volume in the sleep measured by near-infrared spectroscopy.
    Shiotsuka S; Atsumi Y; Ogata S; Yamamoto R; Igawa M; Takahashi K; Hirasawa H; Koyama K; Maki A; Yamashita Y; Koizumi H; Toru M
    Psychiatry Clin Neurosci; 1998 Apr; 52(2):172-3. PubMed ID: 9628133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopreservation of red blood cells--the struggle with hemoglobin oxidation.
    Kanias T; Acker JP
    FEBS J; 2010 Jan; 277(2):343-56. PubMed ID: 19968714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in hemoglobin-oxygen affinity with shape variations of red blood cells.
    Chowdhury A; Dasgupta R; Majumder SK
    J Biomed Opt; 2017 Oct; 22(10):1-9. PubMed ID: 29055124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH on molecular constitution and distribution of hemoglobin in living erythrocyte.
    Wu Y; Huang YX; Kang LL; Wu ZJ; Luo M
    Biopolymers; 2010 Apr; 93(4):348-54. PubMed ID: 19911419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired red cell deformability in iron deficient subjects.
    Brandão MM; Castro Mde L; Fontes A; Cesar CL; Costa FF; Saad ST
    Clin Hemorheol Microcirc; 2009; 43(3):217-21. PubMed ID: 19847056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of erythrocyte cytoplasmic structures in changes in the affinity of haemoglobin for oxygen].
    Bryzgalova NIu; Brazhe NA; Iusipovich AU; Maksimov GV; Rubin AB
    Biofizika; 2009; 54(3):442-7. PubMed ID: 19569503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.