BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2018546)

  • 1. Slow step after bond-breaking by porcine pepsin identified using solvent deuterium isotope effects.
    Rebholz KL; Northrop DB
    Biochem Biophys Res Commun; 1991 Apr; 176(1):65-9. PubMed ID: 2018546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transpeptidation by porcine pepsin catalyzed by a noncovalent intermediate unique to its iso-mechanism.
    Cho YK; Northrop DB
    J Biol Chem; 1998 Sep; 273(38):24305-8. PubMed ID: 9733715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of the synthetic chromophoric hexapeptide Leu-Ser-Phe(NO2)-Nle-Ala-Leu-OMe catalyzed by bovine pepsin A. Dependence on pH and effect of enzyme phosphorylation level.
    Martin P
    Biochim Biophys Acta; 1984 Nov; 791(1):28-36. PubMed ID: 6437448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of porcine pepsin by two substrate analogues containing statine. The effect of histidine at the P2 subsite on the inhibition of aspartic proteinases.
    Maibaum J; Rich DH
    J Med Chem; 1988 Mar; 31(3):625-9. PubMed ID: 3126296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent isotope effects on the onset of inhibition of porcine pepsin by pepstatin.
    Cho YK; Rebholz KL; Northrop DB
    Biochemistry; 1994 Aug; 33(32):9637-42. PubMed ID: 8068640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of viscosity and solvent deuterium identify multiple partially rate-limiting steps in the kinetics of porcine pepsin.
    Rebholz KL; Northrop DB
    Adv Exp Med Biol; 1991; 306():139-42. PubMed ID: 1812701
    [No Abstract]   [Full Text] [Related]  

  • 7. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin.
    Galea CA; Dalrymple BP; Kuypers R; Blakeley R
    Protein Sci; 2000 Oct; 9(10):1947-59. PubMed ID: 11106168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Synthesis of peptides in organic solvents catalyzed by pepsin].
    Anisimova VV; Lysogorskaia EN; Filippova IIu; Oksenoĭt ES; Stepanov VM
    Bioorg Khim; 1994 Mar; 20(3):316-22. PubMed ID: 8166759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis.
    Shintani T; Nomura K; Ichishima E
    J Biol Chem; 1997 Jul; 272(30):18855-61. PubMed ID: 9228062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic peptides for chymosin and pepsin assays: pH effect and pepsin independent-determination in mixtures.
    Salesse R; Garnier J
    J Dairy Sci; 1976 Jul; 59(7):1215-21. PubMed ID: 7580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2.
    Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J
    Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of action of pepsin on fluorescent peptide substrates.
    Sachdev GP; Fruton JS
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3424-7. PubMed ID: 1103147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of pH, temperature, and D2O on the activity of porcine synovial collagenase and gelatinase.
    Stack MS; Gray RD
    Arch Biochem Biophys; 1990 Sep; 281(2):257-63. PubMed ID: 2168159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution.
    Sielecki AR; Fedorov AA; Boodhoo A; Andreeva NS; James MN
    J Mol Biol; 1990 Jul; 214(1):143-70. PubMed ID: 2115087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic studies on the human matrix metalloproteinase stromelysin.
    Harrison RK; Chang B; Niedzwiecki L; Stein RL
    Biochemistry; 1992 Nov; 31(44):10757-62. PubMed ID: 1420192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of pepsin action.
    Hollands TR; Fruton JS
    Proc Natl Acad Sci U S A; 1969 Apr; 62(4):1116-20. PubMed ID: 4894688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of pepsin-catalyzed peptide bond synthesis.
    Bozler H; Wayne SI; Fruton JS
    Int J Pept Protein Res; 1982 Aug; 20(2):102-9. PubMed ID: 6811473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent isotope partitioning: a new kinetic tool for the determination of desorption rates of reactant water from enzyme-substrate complexes in proteases.
    Angeles TS; Roberts GA; Carr SA; Meek TD
    Biochemistry; 1992 Dec; 31(47):11778-84. PubMed ID: 1445912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.