These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20185567)

  • 1. Modular architecture of nucleotide-binding pockets.
    Gherardini PF; Ausiello G; Russell RB; Helmer-Citterich M
    Nucleic Acids Res; 2010 Jun; 38(11):3809-16. PubMed ID: 20185567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural motifs recurring in different folds recognize the same ligand fragments.
    Ausiello G; Gherardini PF; Gatti E; Incani O; Helmer-Citterich M
    BMC Bioinformatics; 2009 Jun; 10():182. PubMed ID: 19527512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of nucleotide-binding sites in protein structures: a novel approach based on nucleotide modularity.
    Parca L; Gherardini PF; Truglio M; Mangone I; Ferrè F; Helmer-Citterich M; Ausiello G
    PLoS One; 2012; 7(11):e50240. PubMed ID: 23209685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An empirical approach for detecting nucleotide-binding sites on proteins.
    Saito M; Go M; Shirai T
    Protein Eng Des Sel; 2006 Feb; 19(2):67-75. PubMed ID: 16403825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.
    Bhagavat R; Srinivasan N; Chandra N
    Proteins; 2017 Sep; 85(9):1699-1712. PubMed ID: 28547747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Semantics of the Modular Architecture of Protein Structures.
    Hleap JS; Blouin C
    Curr Protein Pept Sci; 2016; 17(1):62-71. PubMed ID: 26412786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method to search for similar protein local structures at ligand binding sites and its application to adenine recognition.
    Kobayashi N; Go N
    Eur Biophys J; 1997; 26(2):135-44. PubMed ID: 9232842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-binding site prediction of proteins based on known fragment-fragment interactions.
    Kasahara K; Kinoshita K; Takagi T
    Bioinformatics; 2010 Jun; 26(12):1493-9. PubMed ID: 20472546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: an automated all-against-all structural comparison using geometric matching.
    Brakoulias A; Jackson RM
    Proteins; 2004 Aug; 56(2):250-60. PubMed ID: 15211509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-mononucleotide interactions: three different folds share common structural elements for ATP recognition.
    Denessiouk KA; Lehtonen JV; Johnson MS
    Protein Sci; 1998 Aug; 7(8):1768-71. PubMed ID: 10082373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive structural classification of ligand-binding motifs in proteins.
    Kinjo AR; Nakamura H
    Structure; 2009 Feb; 17(2):234-46. PubMed ID: 19217394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation rules and the evolution of sparseness and modularity in biological systems.
    Friedlander T; Mayo AE; Tlusty T; Alon U
    PLoS One; 2013; 8(8):e70444. PubMed ID: 23936433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution patterns of small-molecule ligands in the protein universe and implications for origin of life and drug discovery.
    Ji HF; Kong DX; Shen L; Chen LL; Ma BG; Zhang HY
    Genome Biol; 2007; 8(8):R176. PubMed ID: 17727706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural fragment clustering reveals novel structural and functional motifs in alpha-helical transmembrane proteins.
    Marsico A; Henschel A; Winter C; Tuukkanen A; Vassilev B; Scheubert K; Schroeder M
    BMC Bioinformatics; 2010 Apr; 11():204. PubMed ID: 20420672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of physics and evolution in the likely origin of protein biochemical function.
    Skolnick J; Gao M
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9344-9. PubMed ID: 23690621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases.
    Hottin A; Marx A
    Acc Chem Res; 2016 Mar; 49(3):418-27. PubMed ID: 26947566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the molecular discrimination between adenine and guanine by proteins.
    Nobeli I; Laskowski RA; Valdar WS; Thornton JM
    Nucleic Acids Res; 2001 Nov; 29(21):4294-309. PubMed ID: 11691917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis.
    Bhagavat R; Kim HB; Kim CY; Terwilliger TC; Mehta D; Srinivasan N; Chandra N
    Sci Rep; 2017 Oct; 7(1):12489. PubMed ID: 28970579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.