BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2018557)

  • 1. Effect of Ca2(+)-entry blocker on the stimulation of aerobic metabolism in rats acclimatized to high altitude hypoxia.
    Yoshino M; Yamamoto C; Murakami K; Katsumata Y; Mori S
    Biochem Pharmacol; 1991 May; 41(10):1532-3. PubMed ID: 2018557
    [No Abstract]   [Full Text] [Related]  

  • 2. Shift of anaerobic to aerobic metabolism in the rats acclimatized to hypoxia.
    Yoshino M; Kato K; Murakami K; Katsumata Y; Tanaka M; Mori S
    Comp Biochem Physiol A Comp Physiol; 1990; 97(3):341-4. PubMed ID: 1979533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in plasma phosphate with the stimulation of anaerobic metabolism in rats during hypoxic-anoxic states.
    Yoshino M; Murakami K; Katsumata Y; Takabayashi A; Mori S
    Comp Biochem Physiol A Comp Physiol; 1986; 85(3):455-7. PubMed ID: 2878774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of galactosamine-induced hepatitis on the aerobic and anaerobic metabolism of the rat exposed to high-altitude hypoxia.
    Yamamoto C; Mori S; Murakami K; Yoshino M
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1995 Jan; 110(1):83-7. PubMed ID: 7749607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-base characteristics of steady-state exercise in rats adapted to simulated altitude.
    Gonzalez NC; Dolezal S; Clancy RL
    Adv Exp Med Biol; 1990; 277():817-24. PubMed ID: 2096682
    [No Abstract]   [Full Text] [Related]  

  • 6. Excretion of lactic acid by rats exposed to simulated high altitude.
    Myles WS; Radomski MW
    Aerosp Med; 1974 Apr; 45(4):422-4. PubMed ID: 4821739
    [No Abstract]   [Full Text] [Related]  

  • 7. Increased affinity to substrate in sarcolemmal ATPases from hearts acclimatized to high altitude hypoxia.
    Ziegelhöffer A; Procházka J; Pelouch V; Ostádal B; Dzurba A; Vrbjar N
    Physiol Bohemoslov; 1987; 36(5):403-15. PubMed ID: 2827200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of the effects of the rearing at simulated altitude in the albino rat.
    Quatrini U; Benigno A; Orlando F
    Boll Soc Ital Biol Sper; 1981 Feb; 57(3):327-32. PubMed ID: 7236410
    [No Abstract]   [Full Text] [Related]  

  • 9. Muscle energetics and ultrastructure in chronic hypoxia.
    Cerretelli P
    Respiration; 1992; 59 Suppl 2():24-9. PubMed ID: 1513969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of adaptation to the altitude hypoxia on catecholamine metabolism in rats with spontaneous hereditary hypertension].
    Barbarash NA; Dvurechenskaia GIa; Volina EV; Berdysheva LV; Putintseva TG
    Biull Eksp Biol Med; 1982 Jan; 93(1):22-4. PubMed ID: 7066498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Adaptation of the body to stress and to altitude hypoxia leads to accumulation of various isoforms of hsp 70 in the myocardium].
    Zamotrinskiĭ AV; Malyshev IIu; Meerson FZ
    Dokl Akad Nauk SSSR; 1991; 320(2):470-2. PubMed ID: 1786770
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of Acute and Chronic Exposure to High Altitude on the Aerobic and Anaerobic Metabolism in Rats.
    Ni Q; Wan FQ; Jing YH; Dong XY; Zhang YC
    Anal Cell Pathol (Amst); 2015; 2015():159549. PubMed ID: 26640758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ketone bodies in animal tissues in acute hypoxia, cooling and altered gas medium].
    Bulakh EI; Baev VI; Brattseva SA
    Ukr Biokhim Zh; 1974; 46(1):96-100. PubMed ID: 4823759
    [No Abstract]   [Full Text] [Related]  

  • 14. Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury.
    Xie Y; Zhu WZ; Zhu Y; Chen L; Zhou ZN; Yang HT
    Life Sci; 2004 Dec; 76(5):559-72. PubMed ID: 15556168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lipid peroxidation in burn shock in rats adapted to high-altitude hypoxia].
    Atadzhanova ZR; Borisov SE; Udovichenko VI
    Patol Fiziol Eksp Ter; 1986; (3):42-4. PubMed ID: 3748623
    [No Abstract]   [Full Text] [Related]  

  • 16. [Relationship of the intensity of protein synthesis in the muscle and connective tissue cells of the myocardium of rats in adaptation to altitude anoxia].
    Aĭnokenova RR
    Kardiologiia; 1973 Nov; 13(11):66-8. PubMed ID: 4783450
    [No Abstract]   [Full Text] [Related]  

  • 17. [Concentration of lactic acid in the blood and erythropoiesis during exposure to hypoxia].
    Shchukina MIa
    Fiziol Zh SSSR Im I M Sechenova; 1986 May; 72(5):668-72. PubMed ID: 3721010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of changes in the bioelectrical activity of the cardiomyocytes in the antiarrhythmic effect of adaptation to hypobaric hypoxia].
    Meerson FZ; Vovk VI
    Fiziol Zh SSSR Im I M Sechenova; 1990 Oct; 76(10):1298-303. PubMed ID: 1966080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hypoxia on high-energy phosphagen content, energy metabolism and isometric force in guinea-pig taenia caeci.
    Ishida Y; Paul RJ
    J Physiol; 1990 May; 424():41-56. PubMed ID: 2391655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ and vasopressin release in isolated rat neurohypophysis: differential effects of four classes of Ca2+ channel ligands.
    von Spreckelsen S; Lollike K; Treiman M
    Brain Res; 1990 Apr; 514(1):68-76. PubMed ID: 2357532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.