BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20185631)

  • 1. Modulation of chronic hypoxia-induced chemoreceptor hypersensitivity by NADPH oxidase subunits in rat carotid body.
    He L; Liu X; Chen J; Dinger B; Stensaas L; Fidone S
    J Appl Physiol (1985); 2010 May; 108(5):1304-10. PubMed ID: 20185631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells.
    He L; Dinger B; Sanders K; Hoidal J; Obeso A; Stensaas L; Fidone S; Gonzalez C
    Am J Physiol Lung Cell Mol Physiol; 2005 Dec; 289(6):L916-24. PubMed ID: 16280459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.
    Kawahara T; Ritsick D; Cheng G; Lambeth JD
    J Biol Chem; 2005 Sep; 280(36):31859-69. PubMed ID: 15994299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of functional NADPH oxidase 2 protects against alcohol-induced bone resorption in female p47phox-/- mice.
    Mercer KE; Sims CR; Yang CS; Wynne RA; Moutos C; Hogue WR; Lumpkin CK; Suva LJ; Chen JR; Badger TM; Ronis MJ
    Alcohol Clin Exp Res; 2014 Mar; 38(3):672-82. PubMed ID: 24256560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia.
    Peng YJ; Nanduri J; Yuan G; Wang N; Deneris E; Pendyala S; Natarajan V; Kumar GK; Prabhakar NR
    J Neurosci; 2009 Apr; 29(15):4903-10. PubMed ID: 19369559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type I cell ROS kinetics under hypoxia in the intact mouse carotid body ex vivo: a FRET-based study.
    Bernardini A; Brockmeier U; Metzen E; Berchner-Pfannschmidt U; Harde E; Acker-Palmer A; Papkovsky D; Acker H; Fandrey J
    Am J Physiol Cell Physiol; 2015 Jan; 308(1):C61-7. PubMed ID: 25318107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice.
    He L; Chen J; Dinger B; Sanders K; Sundar K; Hoidal J; Fidone S
    Am J Physiol Cell Physiol; 2002 Jan; 282(1):C27-33. PubMed ID: 11742795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia.
    Yuan G; Khan SA; Luo W; Nanduri J; Semenza GL; Prabhakar NR
    J Cell Physiol; 2011 Nov; 226(11):2925-33. PubMed ID: 21302291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of NADPH oxidase attenuates hypoxia-induced dysfunctions of endothelial progenitor cells.
    Liu B; Ren KD; Peng JJ; Li T; Luo XJ; Fan C; Yang JF; Peng J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1080-1087. PubMed ID: 27913300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia.
    Chen J; He L; Dinger B; Stensaas L; Fidone S
    Am J Physiol Lung Cell Mol Physiol; 2002 Jun; 282(6):L1314-23. PubMed ID: 12003788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal NADPH oxidase 2 activity increases in a neonatal rat model of necrotizing enterocolitis.
    Welak SR; Rentea RM; Teng RJ; Heinzerling N; Biesterveld B; Liedel JL; Pritchard KA; Fredrich KM; Gourlay DM
    PLoS One; 2014; 9(12):e115317. PubMed ID: 25517730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells.
    Rathore R; Zheng YM; Niu CF; Liu QH; Korde A; Ho YS; Wang YX
    Free Radic Biol Med; 2008 Nov; 45(9):1223-31. PubMed ID: 18638544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes of blood pressure and expression of NADPH oxidase in carotid body in rats exposed to intermittent hypoxia].
    Liu HG; Wu HM; Xu YJ
    Zhonghua Jie He He Hu Xi Za Zhi; 2011 Jan; 34(1):26-9. PubMed ID: 21429415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2.
    Norton CE; Broughton BR; Jernigan NL; Walker BR; Resta TC
    Antioxid Redox Signal; 2013 May; 18(14):1777-88. PubMed ID: 22966991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early NADPH oxidase-2 activation is crucial in phenylephrine-induced hypertrophy of H9c2 cells.
    Hahn NE; Musters RJ; Fritz JM; Pagano PJ; Vonk AB; Paulus WJ; van Rossum AC; Meischl C; Niessen HW; Krijnen PA
    Cell Signal; 2014 Sep; 26(9):1818-24. PubMed ID: 24794531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase.
    Peng YJ; Raghuraman G; Khan SA; Kumar GK; Prabhakar NR
    J Appl Physiol (1985); 2011 Oct; 111(4):964-70. PubMed ID: 21636565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells.
    Souvannakitti D; Nanduri J; Yuan G; Kumar GK; Fox AP; Prabhakar NR
    J Neurosci; 2010 Aug; 30(32):10763-72. PubMed ID: 20705601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nox-derived ROS are acutely activated in pressure overload pulmonary hypertension: indications for a seminal role for mitochondrial Nox4.
    Frazziano G; Al Ghouleh I; Baust J; Shiva S; Champion HC; Pagano PJ
    Am J Physiol Heart Circ Physiol; 2014 Jan; 306(2):H197-205. PubMed ID: 24213612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays.
    Rezende F; Prior KK; Löwe O; Wittig I; Strecker V; Moll F; Helfinger V; Schnütgen F; Kurrle N; Wempe F; Walter M; Zukunft S; Luck B; Fleming I; Weissmann N; Brandes RP; Schröder K
    Free Radic Biol Med; 2017 Jan; 102():57-66. PubMed ID: 27863990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase.
    Nanduri J; Vaddi DR; Khan SA; Wang N; Makarenko V; Semenza GL; Prabhakar NR
    PLoS One; 2015; 10(3):e0119762. PubMed ID: 25751622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.