These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

683 related articles for article (PubMed ID: 20185762)

  • 21. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men.
    Risérus U; Sprecher D; Johnson T; Olson E; Hirschberg S; Liu A; Fang Z; Hegde P; Richards D; Sarov-Blat L; Strum JC; Basu S; Cheeseman J; Fielding BA; Humphreys SM; Danoff T; Moore NR; Murgatroyd P; O'Rahilly S; Sutton P; Willson T; Hassall D; Frayn KN; Karpe F
    Diabetes; 2008 Feb; 57(2):332-9. PubMed ID: 18024853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Palmitate-mediated downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha in skeletal muscle cells involves MEK1/2 and nuclear factor-kappaB activation.
    Coll T; Jové M; Rodríguez-Calvo R; Eyre E; Palomer X; Sánchez RM; Merlos M; Laguna JC; Vázquez-Carrera M
    Diabetes; 2006 Oct; 55(10):2779-87. PubMed ID: 17003343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.
    Robciuc MR; Skrobuk P; Anisimov A; Olkkonen VM; Alitalo K; Eckel RH; Koistinen HA; Jauhiainen M; Ehnholm C
    PLoS One; 2012; 7(10):e46212. PubMed ID: 23056264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The PPARδ Agonist GW501516 Improves Lipolytic/Lipogenic Balance through CPT1 and PEPCK during the Development of Pre-Implantation Bovine Embryos.
    Idrees M; Xu L; El Sheikh M; Sidrat T; Song SH; Joo MD; Lee KL; Kong IK
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31810173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatty acid-induced NF-kappaB activation and insulin resistance in skeletal muscle are chain length dependent.
    Hommelberg PP; Plat J; Langen RC; Schols AM; Mensink RP
    Am J Physiol Endocrinol Metab; 2009 Jan; 296(1):E114-20. PubMed ID: 18957619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classical NF-κB activation impairs skeletal muscle oxidative phenotype by reducing IKK-α expression.
    Remels AH; Gosker HR; Langen RC; Polkey M; Sliwinski P; Galdiz J; van den Borst B; Pansters NA; Schols AM
    Biochim Biophys Acta; 2014 Feb; 1842(2):175-85. PubMed ID: 24215713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells.
    Dressel U; Allen TL; Pippal JB; Rohde PR; Lau P; Muscat GE
    Mol Endocrinol; 2003 Dec; 17(12):2477-93. PubMed ID: 14525954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells.
    Jové M; Planavila A; Laguna JC; Vázquez-Carrera M
    Endocrinology; 2005 Jul; 146(7):3087-95. PubMed ID: 15802498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genistein stimulates fatty acid oxidation in a leptin receptor-independent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle.
    Palacios-González B; Zarain-Herzberg A; Flores-Galicia I; Noriega LG; Alemán-Escondrillas G; Zariñan T; Ulloa-Aguirre A; Torres N; Tovar AR
    Biochim Biophys Acta; 2014 Jan; 1841(1):132-40. PubMed ID: 24013029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.
    Feng YZ; Nikolić N; Bakke SS; Boekschoten MV; Kersten S; Kase ET; Rustan AC; Thoresen GH
    Arch Physiol Biochem; 2014 Feb; 120(1):12-21. PubMed ID: 23991827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential expression of peroxisomal proliferator activated receptors alpha and delta in skeletal muscle in response to changes in diet and exercise.
    Kannisto K; Chibalin A; Glinghammar B; Zierath JR; Hamsten A; Ehrenborg E
    Int J Mol Med; 2006 Jan; 17(1):45-52. PubMed ID: 16328010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roles of peroxisome proliferator-activated receptor delta (PPARdelta) in the control of fatty acid catabolism. A new target for the treatment of metabolic syndrome.
    Luquet S; Lopez-Soriano J; Holst D; Gaudel C; Jehl-Pietri C; Fredenrich A; Grimaldi PA
    Biochimie; 2004 Nov; 86(11):833-7. PubMed ID: 15589693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peroxisome proliferator-activated receptor-δ activates endothelial progenitor cells to induce angio-myogenesis through matrix metallo-proteinase-9-mediated insulin-like growth factor-1 paracrine networks.
    Han JK; Kim HL; Jeon KH; Choi YE; Lee HS; Kwon YW; Jang JJ; Cho HJ; Kang HJ; Oh BH; Park YB; Kim HS
    Eur Heart J; 2013 Jun; 34(23):1755-65. PubMed ID: 21920965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells.
    Pimenta AS; Gaidhu MP; Habib S; So M; Fediuc S; Mirpourian M; Musheev M; Curi R; Ceddia RB
    J Cell Physiol; 2008 Nov; 217(2):478-85. PubMed ID: 18561258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome.
    Tanaka T; Yamamoto J; Iwasaki S; Asaba H; Hamura H; Ikeda Y; Watanabe M; Magoori K; Ioka RX; Tachibana K; Watanabe Y; Uchiyama Y; Sumi K; Iguchi H; Ito S; Doi T; Hamakubo T; Naito M; Auwerx J; Yanagisawa M; Kodama T; Sakai J
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15924-9. PubMed ID: 14676330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of PPARβ/δ protects pancreatic β cells from palmitate-induced apoptosis by upregulating the expression of GLP-1 receptor.
    Yang Y; Tong Y; Gong M; Lu Y; Wang C; Zhou M; Yang Q; Mao T; Tong N
    Cell Signal; 2014 Feb; 26(2):268-78. PubMed ID: 24269940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes.
    Capel F; Cheraiti N; Acquaviva C; Hénique C; Bertrand-Michel J; Vianey-Saban C; Prip-Buus C; Morio B
    Biochim Biophys Acta; 2016 Dec; 1861(12 Pt A):2000-2010. PubMed ID: 27725263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Palmitate induces interleukin-8 expression in human aortic vascular smooth muscle cells via Toll-like receptor 4/nuclear factor-κB pathway (TLR4/NF-κB-8).
    Quan J; Liu J; Gao X; Liu J; Yang H; Chen W; Li W; Li Y; Yang W; Wang B
    J Diabetes; 2014 Jan; 6(1):33-41. PubMed ID: 23826669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha.
    Yoon MJ; Lee GY; Chung JJ; Ahn YH; Hong SH; Kim JB
    Diabetes; 2006 Sep; 55(9):2562-70. PubMed ID: 16936205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-kappaB.
    Weigert C; Brodbeck K; Staiger H; Kausch C; Machicao F; Häring HU; Schleicher ED
    J Biol Chem; 2004 Jun; 279(23):23942-52. PubMed ID: 15028733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.