BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20186427)

  • 1. Properties of the soybean seed coat cuticle change during development.
    Ranathunge K; Shao S; Qutob D; Gijzen M; Peterson CA; Bernards MA
    Planta; 2010 Apr; 231(5):1171-88. PubMed ID: 20186427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water.
    Ma F; Cholewa E; Mohamed T; Peterson CA; Gijzen M
    Ann Bot; 2004 Aug; 94(2):213-28. PubMed ID: 15217785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The outermost cuticle of soybean seeds: chemical composition and function during imbibition.
    Shao S; Meyer CJ; Ma F; Peterson CA; Bernards MA
    J Exp Bot; 2007; 58(5):1071-82. PubMed ID: 17218545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.
    De Giorgi J; Piskurewicz U; Loubery S; Utz-Pugin A; Bailly C; Mène-Saffrané L; Lopez-Molina L
    PLoS Genet; 2015 Dec; 11(12):e1005708. PubMed ID: 26681322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes.
    Kovinich N; Saleem A; Arnason JT; Miki B
    BMC Genomics; 2011 Jul; 12():381. PubMed ID: 21801362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean.
    Jang SJ; Sato M; Sato K; Jitsuyama Y; Fujino K; Mori H; Takahashi R; Benitez ER; Liu B; Yamada T; Abe J
    PLoS One; 2015; 10(6):e0128527. PubMed ID: 26039079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties.
    Panikashvili D; Shi JX; Schreiber L; Aharoni A
    Plant Physiol; 2009 Dec; 151(4):1773-89. PubMed ID: 19828672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns and kinetics of water uptake by soybean seeds.
    Meyer CJ; Steudle E; Peterson CA
    J Exp Bot; 2007; 58(3):717-32. PubMed ID: 17185739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification and characterization of InDels and SNPs in Glycine max and Glycine soja for contrasting seed permeability traits.
    Ramakrishna G; Kaur P; Nigam D; Chaduvula PK; Yadav S; Talukdar A; Singh NK; Gaikwad K
    BMC Plant Biol; 2018 Jul; 18(1):141. PubMed ID: 29986650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis.
    Fabre G; Garroum I; Mazurek S; Daraspe J; Mucciolo A; Sankar M; Humbel BM; Nawrath C
    New Phytol; 2016 Jan; 209(1):192-201. PubMed ID: 26406899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis.
    Gou M; Hou G; Yang H; Zhang X; Cai Y; Kai G; Liu CJ
    Plant Physiol; 2017 Feb; 173(2):1045-1058. PubMed ID: 27965303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of water deficiency on leaf cuticle lipids of Arabidopsis.
    Kosma DK; Bourdenx B; Bernard A; Parsons EP; Lü S; Joubès J; Jenks MA
    Plant Physiol; 2009 Dec; 151(4):1918-29. PubMed ID: 19819982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors.
    Li SF; Allen PJ; Napoli RS; Browne RG; Pham H; Parish RW
    Plant Cell Physiol; 2020 May; 61(5):1005-1018. PubMed ID: 32154880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting transcriptional circuitry underlying seed coat development.
    Khan D; Chan A; Millar JL; Girard IJ; Belmonte MF
    Plant Sci; 2014 Jun; 223():146-52. PubMed ID: 24767124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of gene expression patterns during seed coat development in Arabidopsis.
    Dean G; Cao Y; Xiang D; Provart NJ; Ramsay L; Ahad A; White R; Selvaraj G; Datla R; Haughn G
    Mol Plant; 2011 Nov; 4(6):1074-91. PubMed ID: 21653281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Spatio-Temporal Transcriptome Profiles of Soybean (
    Sun S; Yi C; Ma J; Wang S; Peirats-Llobet M; Lewsey MG; Whelan J; Shou H
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of tannic cell walls at the outer surface of the endosperm upon Arabidopsis seed coat rupture.
    Demonsais L; Utz-Pugin A; Loubéry S; Lopez-Molina L
    Plant J; 2020 Nov; 104(3):567-580. PubMed ID: 32985026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soybean Hydrophobic Protein is Present in a Matrix Secreted by the Endocarp Epidermis during Seed Development.
    Enstone DE; Peterson CA; Gijzen M
    Sci Rep; 2015 Oct; 5():15074. PubMed ID: 26455712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana.
    Molina I; Ohlrogge JB; Pollard M
    Plant J; 2008 Feb; 53(3):437-49. PubMed ID: 18179651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation.
    D'Angeli S; Falasca G; Matteucci M; Altamura MM
    New Phytol; 2013 Jan; 197(1):123-138. PubMed ID: 23078289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.