BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20186487)

  • 1. Single camera photogrammetry system for EEG electrode identification and localization.
    Baysal U; Sengül G
    Ann Biomed Eng; 2010 Apr; 38(4):1539-47. PubMed ID: 20186487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.
    Qian S; Sheng Y
    Ann Biomed Eng; 2011 Nov; 39(11):2844-56. PubMed ID: 21818532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geodesic photogrammetry for localizing sensor positions in dense-array EEG.
    Russell GS; Jeffrey Eriksen K; Poolman P; Luu P; Tucker DM
    Clin Neurophysiol; 2005 May; 116(5):1130-40. PubMed ID: 15826854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of electrode positions using electrode caps.
    Atcherson SR; Gould HJ; Pousson MA; Prout TM
    Brain Topogr; 2007; 20(2):105-11. PubMed ID: 17929157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A semi-automatic method to determine electrode positions and labels from gel artifacts in EEG/fMRI-studies.
    de Munck JC; van Houdt PJ; Verdaasdonk RM; Ossenblok PP
    Neuroimage; 2012 Jan; 59(1):399-403. PubMed ID: 21784161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated detection and labeling of high-density EEG electrodes from structural MR images.
    Marino M; Liu Q; Brem S; Wenderoth N; Mantini D
    J Neural Eng; 2016 Oct; 13(5):056003. PubMed ID: 27484621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution.
    Ryynänen OR; Hyttinen JA; Laarne PH; Malmivuo JA
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1547-54. PubMed ID: 15376503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General bounds for electrode mislocation on the EEG inverse problem.
    Beltrachini L; von Ellenrieder N; Muravchik CH
    Comput Methods Programs Biomed; 2011 Jul; 103(1):1-9. PubMed ID: 20599288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated landmark extraction for orthodontic measurement of faces using the 3-camera photogrammetry methodology.
    Deli R; Di Gioia E; Galantucci LM; Percoco G
    J Craniofac Surg; 2010 Jan; 21(1):87-93. PubMed ID: 20072024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial localization of EEG electrodes using 3D scanning.
    Taberna GA; Marino M; Ganzetti M; Mantini D
    J Neural Eng; 2019 Apr; 16(2):026020. PubMed ID: 30634182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tri-polar concentric ring electrode development for laplacian electroencephalography.
    Besio WG; Koka K; Aakula R; Dai W
    IEEE Trans Biomed Eng; 2006 May; 53(5):926-33. PubMed ID: 16686415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic camera-based identification and 3-D reconstruction of electrode positions in electrocardiographic imaging.
    Schulze WH; Mackens P; Potyagaylo D; Rhode K; Tülümen E; Schimpf R; Papavassiliu T; Borggrefe M; Dössel O
    Biomed Tech (Berl); 2014 Dec; 59(6):515-28. PubMed ID: 25229412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera.
    Clausner T; Dalal SS; Crespo-García M
    Front Neurosci; 2017; 11():264. PubMed ID: 28559791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes.
    Koka K; Besio WG
    J Neurosci Methods; 2007 Sep; 165(2):216-22. PubMed ID: 17681379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference.
    Yao D; Wang L; Oostenveld R; Nielsen KD; Arendt-Nielsen L; Chen AC
    Physiol Meas; 2005 Jun; 26(3):173-84. PubMed ID: 15798293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of EEG electrode number on epileptic source localization in pediatric patients.
    Sohrabpour A; Lu Y; Kankirawatana P; Blount J; Kim H; He B
    Clin Neurophysiol; 2015 Mar; 126(3):472-80. PubMed ID: 25088733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of measurement noise and electrode density on the spatial resolution of cortical potential distribution with different resistivity values for the skull.
    Ryynänen OR; Hyttinen JA; Malmivuo JA
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1851-8. PubMed ID: 16941841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bipolar electrode selection for a motor imagery based brain-computer interface.
    Lou B; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Sep; 5(3):342-9. PubMed ID: 18756030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.