BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20186553)

  • 1. Identification of functionally diverse lipocalin proteins from sequence information using support vector machine.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Archunan G; Sowdhamini R
    Amino Acids; 2010 Aug; 39(3):777-83. PubMed ID: 20186553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Sowdhamini R; Martinetz T; Kolatkar PR
    J Biomol Struct Dyn; 2010 Dec; 28(3):405-14. PubMed ID: 20919755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest.
    Kumar KK; Pugalenthi G; Suganthan PN
    J Biomol Struct Dyn; 2009 Jun; 26(6):679-86. PubMed ID: 19385697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exon-intron structure of outlier tick lipocalins indicate a monophyletic origin within the larger lipocalin family.
    Mans BJ; Neitz AW
    Insect Biochem Mol Biol; 2004 Jun; 34(6):585-94. PubMed ID: 15147759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling.
    Adam B; Charloteaux B; Beaufays J; Vanhamme L; Godfroid E; Brasseur R; Lins L
    BMC Struct Biol; 2008 Jan; 8():1. PubMed ID: 18190694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exon-intron structure and evolution of the Lipocalin gene family.
    Sánchez D; Ganfornina MD; Gutiérrez G; Marín A
    Mol Biol Evol; 2003 May; 20(5):775-83. PubMed ID: 12679526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach.
    Lin HH; Han LY; Zhang HL; Zheng CJ; Xie B; Cao ZW; Chen YZ
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S13. PubMed ID: 17254297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Better prediction of the location of alpha-turns in proteins with support vector machine.
    Wang Y; Xue Z; Xu J
    Proteins; 2006 Oct; 65(1):49-54. PubMed ID: 16894602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of ubiquitin proteins using artificial neural networks, hidden markov model and support vector machines.
    Jaiswal K
    In Silico Biol; 2007; 7(6):559-68. PubMed ID: 18467768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of RNA binding sites in a protein using SVM and PSSM profile.
    Kumar M; Gromiha MM; Raghava GP
    Proteins; 2008 Apr; 71(1):189-94. PubMed ID: 17932917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein topology classification using two-stage support vector machines.
    Gubbi J; Shilton A; Parker M; Palaniswami M
    Genome Inform; 2006; 17(2):259-69. PubMed ID: 17503398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach.
    Hua S; Sun Z
    J Mol Biol; 2001 Apr; 308(2):397-407. PubMed ID: 11327775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roborovskin, a lipocalin in the urine of the Roborovski hamster, Phodopus roborovskii.
    Turton MJ; Robertson DH; Smith JR; Hurst JL; Beynon RJ
    Chem Senses; 2010 Oct; 35(8):675-84. PubMed ID: 20576820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein subcellular localization.
    Yu CS; Chen YC; Lu CH; Hwang JK
    Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer prediction of allergen proteins from sequence-derived protein structural and physicochemical properties.
    Cui J; Han LY; Li H; Ung CY; Tang ZQ; Zheng CJ; Cao ZW; Chen YZ
    Mol Immunol; 2007 Jan; 44(4):514-20. PubMed ID: 16563508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information.
    Wang Y; Xue ZD; Shi XH; Xu J
    Biochem Biophys Res Commun; 2006 Sep; 347(3):574-80. PubMed ID: 16844090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine separations profiles on protein sequences infer disulfide connectivity.
    Zhao E; Liu HL; Tsai CH; Tsai HK; Chan CH; Kao CY
    Bioinformatics; 2005 Apr; 21(8):1415-20. PubMed ID: 15585533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.