BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 20186747)

  • 1. The role of protein quality control in mitochondrial protein homeostasis under oxidative stress.
    Bender T; Leidhold C; Ruppert T; Franken S; Voos W
    Proteomics; 2010 Apr; 10(7):1426-43. PubMed ID: 20186747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial protein homeostasis: the cooperative roles of chaperones and proteases.
    Voos W
    Res Microbiol; 2009 Nov; 160(9):718-25. PubMed ID: 19723579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1.
    Major T; von Janowsky B; Ruppert T; Mogk A; Voos W
    Mol Cell Biol; 2006 Feb; 26(3):762-76. PubMed ID: 16428434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging.
    Bulteau AL; Szweda LI; Friguet B
    Exp Gerontol; 2006 Jul; 41(7):653-7. PubMed ID: 16677792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acclimation temperature and cadmium exposure on mitochondrial aconitase and LON protease from a model marine ectotherm, Crassostrea virginica.
    Sanni B; Williams K; Sokolov EP; Sokolova IM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):101-12. PubMed ID: 17869588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial protein quality control: implications in ageing.
    Friguet B; Bulteau AL; Petropoulos I
    Biotechnol J; 2008 Jun; 3(6):757-64. PubMed ID: 18446870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and protease dysfunction in the yeast model of Friedreich ataxia.
    Bulteau AL; Dancis A; Gareil M; Montagne JJ; Camadro JM; Lesuisse E
    Free Radic Biol Med; 2007 May; 42(10):1561-70. PubMed ID: 17448903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive changes of the yeast mitochondrial proteome in response to salt stress.
    Martínez-Pastor M; Proft M; Pascual-Ahuir A
    OMICS; 2010 Oct; 14(5):541-52. PubMed ID: 20955007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation.
    Gibson BW
    Int J Biochem Cell Biol; 2005 May; 37(5):927-34. PubMed ID: 15743667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards the control of intracellular protein turnover: mitochondrial Lon protease inhibitors versus proteasome inhibitors.
    Bayot A; Basse N; Lee I; Gareil M; Pirotte B; Bulteau AL; Friguet B; Reboud-Ravaux M
    Biochimie; 2008 Feb; 90(2):260-9. PubMed ID: 18021745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid rates of newly synthesized mitochondrial protein degradation are significantly affected by the generation of mitochondrial free radicals.
    Basoah A; Matthews PM; Morten KJ
    FEBS Lett; 2005 Nov; 579(28):6511-7. PubMed ID: 16289094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism.
    Bota DA; Davies KJ
    Nat Cell Biol; 2002 Sep; 4(9):674-80. PubMed ID: 12198491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity.
    Bulteau AL; O'Neill HA; Kennedy MC; Ikeda-Saito M; Isaya G; Szweda LI
    Science; 2004 Jul; 305(5681):242-5. PubMed ID: 15247478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: a role of temperature in oxidative stress and allosteric enzyme regulation.
    Cherkasov AA; Overton RA; Sokolov EP; Sokolova IM
    J Exp Biol; 2007 Jan; 210(Pt 1):46-55. PubMed ID: 17170147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural properties of substrate proteins determine their proteolysis by the mitochondrial AAA+ protease Pim1.
    von Janowsky B; Knapp K; Major T; Krayl M; Guiard B; Voos W
    Biol Chem; 2005 Dec; 386(12):1307-17. PubMed ID: 16336126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of the lon protease in mitochondrial maintenance and the significance of declining lon in aging.
    Ngo JK; Davies KJ
    Ann N Y Acad Sci; 2007 Nov; 1119():78-87. PubMed ID: 18056957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of Hsp78, the mitochondrial ClpB homolog.
    Leidhold C; von Janowsky B; Becker D; Bender T; Voos W
    J Struct Biol; 2006 Oct; 156(1):149-64. PubMed ID: 16765060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway.
    Dzierzbicki P; Koprowski P; Fikus MU; Malc E; Ciesla Z
    DNA Repair (Amst); 2004 Apr; 3(4):403-11. PubMed ID: 15010316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.